mpv

amediaplayer

Copyright:  GPLv2+

Manual 1
section:

Manual group: multimedia



Table of Contents

SYNOPSIS
DESCRIPTION
INTERACTIVE CONTROL
Keyboard Control
Mouse Control
Context Menu
USAGE
Legacy option syntax
Escaping spaces and other special characters
Paths
Per-File Options
List Options
String list and path list options
Key/value list options
Object settings list options
General
CONFIGURATION FILES
Location and Syntax
Escaping special characters
Putting Command Line Options into the Configuration File
File-specific Configuration Files
Profiles
Runtime profiles
Conditional auto profiles
Legacy auto profiles
Using mpv from other programs or scripts
TAKING SCREENSHOTS
TERMINAL STATUS LINE
LOW LATENCY PLAYBACK
RESUMING PLAYBACK
PROTOCOLS
PSEUDO GUI MODE
OPTIONS
Track Selection
Playback Control
Program Behavior
Watch Later
Watch History
Video
Audio
Subtitles

© © o0 =~

13
14
15
15
15
16
17
18
18
18
19
19
20
20
20
20
21
21
21
22
25
26
27
28
29
30
31
34
35
35
37
45
50
51
52
64
70



Window

Disc Devices
Equalizer
Demuxer

Input

OSsD

Screenshot
Software Scaler
Audio Resampler
Terminal

Cache

Network

DVvB

GPU renderer options
Video Sync

Miscellaneous

AUDIO OUTPUT DRIVERS
VIDEO OUTPUT DRIVERS
AUDIO FILTERS

VIDEO FILTERS
ENCODING

COMMAND INTERFACE

input.conf

input.conf syntax

Key names

Flat command syntax

Commands specified as arrays

Named arguments

List of Input Commands
Playback Control
Property Manipulation
Playlist Manipulation
Track Manipulation
Text Manipulation
Configuration Commands

OSD Commands

Input and Keybind Commands

Execution Commands
Scripting Commands
Screenshot Commands
Filter Commands
Miscellaneous Commands

List of events

83

92

93

94

99
103
107
110
111
112
114
116
118
118
147
149
155
160
172
176
190
192
192
192
193
194
195
195
195
195
197
198
201
202
203
203
206
208
210
212
213
214
216



Hooks 218

Input Command Prefixes 219
Synchronous vs. Asynchronous 220
Asynchronous command details 221
Input Sections 221
Properties 221
Property list 221
Inconsistencies between options and properties 249
Property Expansion 249

Raw and Formatted Properties 250

ON SCREEN CONTROLLER 251
Using the OSC 251

The Interface 251

Key Bindings 253
Configuration 253
Command-line Syntax 253
Configurable Options 253

Custom Buttons 259

Script Commands 259

STATS 261
Usage 261
Configuration 261
Configurable Options 261

Different key bindings 264

Active key bindings page 264

Internal stuff page 264
CONSOLE 266
Free-form text mode keybindings 266
Known issues 267
Configuration 267
Configurable Options 267
COMMANDS 270
Keybindings 270
Commands 270
Configuration 270
Configurable Options 270

SELECT 271
Key bindings 271
Script bindings 271
Configuration 272
Configurable options 273
POSITIONING 274

Script bindings 274



Configuration 274

Configurable Options 274

LUA SCRIPTING 275
Example 275
Script location 275
Details on the script initialization and lifecycle 276

mp functions 276
Advanced mp functions 282
mp.msg functions 283
mp.options functions 284
mp.utils functions 285
mp.input functions 287
Events 289
Extras 289
JAVASCRIPT 290
Example 290
Similarities with Lua 290
Differences from Lua 290
Language features - ECMAScript 5 290
Unsupported Lua APIs and their JS alternatives 290
Scripting APIs - identical to Lua 291
Additional utilities 292
Timers (global) 293
CommonJS modules and r equi re(i d) 294
Custom initialization 294

The event loop 294
JSON IPC 296
Socat example 296
Command Prompt example 296
Protocol 297
Data flow 298
Asynchronous commands 298
Commands with named arguments 298
Commands 298
UTF-8 300
JSON extensions 300
Alternative ways of starting clients 301
CHANGELOG 302
EMBEDDING INTO OTHER PROGRAMS (LIBMPV) 303
C PLUGINS 304
C plugins location 304

API 304

Linkage to libmpv 304



Examples
ENVIRONMENT VARIABLES
EXIT CODES
OPTICAL DRIVES
FILES
FILES ON WINDOWS
FILES ON MACOS

304
305
307
308
309
311
312



SYNOPSIS

mpv [options] [file|URL|PLAYLIST]-]
mpv [options] files



DESCRIPTION

mpvV is a media player based on MPlayer and mplayer2. It supports a wide variety of video file formats, audio
and video codecs, and subtitle types. Special input URL types are available to read input from a variety of
sources other than disk files. Depending on platform, a variety of different video and audio output methods
are supported.

Usage examples to get you started quickly can be found at the end of this man page.



INTERACTIVE CONTROL

mpv has a fully configurable, command-driven control layer which allows you to control mpv using keyboard,
mouse, or remote control (there is no LIRC support - configure remotes as input devices instead).

See the - - i nput - options for ways to customize it.

The following listings are not necessarily complete. See et ¢/ i nput . conf in the mpv source files for a list
of default bindings. User i nput . conf files and Lua scripts can define additional key bindings.

See COMMAND INTERFACE and Key names sections for more details on configuring keybindings.

See also - - i nput -t est for interactive binding details by key, and the stats built-in script for key bindings
list (including print to terminal). By default, the ? key toggles the display of this list.

Keyboard Control

LEFT and RIGHT

Seek backward/forward 5 seconds. Shift+arrow does a 1 second exact seek (see - - hr - seek).
UP and DOWN

Seek forward/backward 1 minute. Shift+arrow does a 5 second exact seek (see - - hr - seek).
Ctrl+LEFT and Ctrl+RIGHT

Seek to the previous/next subtitle. Subject to some restrictions and might not always work; see
sub- seek command.

Ctrl+Shift+LEFT and Ctrl+Shift+RIGHT

Adjust subtitle delay so that the previous or next subtitle is displayed now. This is especially useful to
sync subtitles to audio.

[and ]

Decreasel/increase current playback speed by 10%.
{and}

Halve/double current playback speed.
BACKSPACE

Reset playback speed to normal.
Shift+BACKSPACE

Undo the last seek. This works only if the playlist entry was not changed. Hitting it a second time will go
back to the original position. See r ever t - seek command for details.

Shift+Ctrl+BACKSPACE

Mark the current position. This will then be used by Shi f t +BACKSPACE as revert position (once you
seek back, the marker will be reset). You can use this to seek around in the file and then return to the
exact position where you left off.

<and >

Go backward/forward in the playlist.
ENTER

Go forward in the playlist.
Shift+HOME and Shift+END

Go to the first/last playlist entry.
p and SPACE

Pause (pressing again unpauses).

Step forward. Pressing once will pause, every consecutive press will play one frame and then go into
pause mode again.



Step backward. Pressing once will pause, every consecutive press will play one frame in reverse and
then go into pause mode again.

Stop playing and quit.

Like g, but store the current playback position. Playing the same file later will resume at the old playback
position if possible. See RESUMING PLAYBACK.

/and *

Decrease/increase volume.
KP_DIVIDE and KP_MULTIPLY

Decrease/increase volume.
9and0

Decrease/increase volume.

m

Mute sound.

Cycle through the available video tracks.
#

Cycle through the available audio tracks.
E

Cycle through the available Editions.

Toggle fullscreen (see also - - f s).
ESC
Exit fullscreen mode.

Toggle stay-on-top (see also - - ont op).
w and W

Decrease/increase pan-and-scan range. The e key does the same as W currently, but use is
discouraged. See - - panscan for more information.

oandP
Show progression bar, elapsed time and total duration on the OSD.

O
Toggle OSD states between normal and playback time/duration.
%
Toggle subtitle visibility.
Alt+v
Toggle secondary subtitle visibility.
jand J
Cycle through the available subtitles.
zand Z
Adjust subtitle delay by -/+ 0.1 seconds. The x key does the same as Z currently, but use is discouraged.
I
Set/clear A-B loop points. See ab- | oop command for details.
L

Toggle infinite looping.



Ctrl++ and Ctrl+-

Adjust audio delay (A/V sync) by +/- 0.1 seconds.
Ctrl+KP_ADD and Ctrl+KP_SUBTRACT

Adjust audio delay (A/V sync) by +/- 0.1 seconds.
GandF

Adjust subtitle font size by +/- 10%.

u
Switch between applying only - - sub- ass-* overrides (default) to SSA/ASS subtitles, and overriding
them almost completely with the normal subtitle style. See - - sub- ass- overri de for more info.

Y
Cycle through which video data gets used for ASS rendering. See - - sub- ass- use- vi deo- dat a for
more info.

rand R
Move subtitles up/down. The t key does the same as R currently, but use is discouraged.

S
Take a screenshot.

S

Take a screenshot, without subtitles. (Whether this works depends on VO driver support.)
Ctrl+s

Take a screenshot, as the window shows it (with subtitles, OSD, and scaled video).
HOME

Seek to the beginning of the file.
PGUP and PGDWN

Seek to the beginning of the previous/next chapter. In most cases, "previous" will actually go to the
beginning of the current chapter; see - - chapt er - seek-t hr eshol d.

Shift+PGUP and Shift+PGDWN
Seek backward or forward by 10 minutes. (This used to be mapped to PGUP/PGDWN without Shift.)

b

Activate/deactivate debanding.
d

Cycle the deinterlacing filter.
A

Cycle aspect ratio override.
Ctrl+h
Toggle hardware video decoding on/off.
Alt+LEFT, Alt+RIGHT, Alt+UP, Alt+DOWN
Move the video rectangle (panning).
Alt++ and Alt+-
Change video zoom.
Alt+KP_ADD and Alt+KP_SUBTRACT
Change video zoom.
Alt+BACKSPACE
Reset the pan/zoom settings.
F8
Show the playlist and the current position in it.
F9



Show the list of audio and subtitle streams.
Ctrl+v

Append the file or URL in the clipboard to the playlist. If nothing is currently playing, it is played
immediately. Only works on platforms that support the cl i pboar d property.

iand |

Show/toggle an overlay displaying statistics about the currently playing file such as codec, framerate,
number of dropped frames and so on. See STATS for more information.

Toggle an overlay displaying the active key bindings. See STATS for more information.
DEL
Cycle OSC visibility between never / auto (mouse-move) / always

Show the console. (ESC closes it again. See CONSOLE.)

(The following keys are valid only when using a video output that supports the corresponding adjustment.)
land 2
Adjust contrast.
3and 4
Adjust brightness.
5and 6
Adjust gamma.
7and 8
Adjust saturation.
Alt+0 (and Command+0 on macOS)
Resize video window to half its original size.
Alt+1 (and Command+1 on macOS)
Resize video window to its original size.
Alt+2 (and Command+2 on macOS)
Resize video window to double its original size.
Command + f (macOS only)
Toggle fullscreen (see also - - f s).
(The following keybindings open a menu in the console that lets you choose from a list of items by typing part
of the desired item, by clicking the desired item, or by navigating them with keybindings: Down and Ct r | +n

go down, Up and Ct r | +p go up, Page down and Ct r | +f scroll down one page, and Page upand Ctrl +b
scroll up one page.)

In track menus, selecting the current tracks disables it.
g-p

Select a playlist entry.
g-s

Select a subtitle track.
g-S

Select a secondary subtitle track.
g-a

Select an audio track.
g-v

Select a video track.



g-t
Select a track of any type.

g-c
Select a chapter.
g-e
Select an MKV edition or DVD/Blu-ray title.
g-l
Select a subtitle line to seek to. This currently requires f f npeg in PATH, or in the same folder as mpv on
Windows.
g-d
Select an audio device.
g-h
Select a file from the watch history. Requires - - save- wat ch- hi st ory.
g-w
Select a file from watch later config files (see RESUMING PLAYBACK) to resume playing. Requires
--write-filenanme-in-watch-later-config.
g-b
Select a defined input binding.
g-r

Show the values of all properties.
g-m, MENU, Ctrl+p

Show a menu with miscellaneous entries.
See SELECT for more information.

(The following keys are valid if you have a keyboard with multimedia keys.)
PAUSE
Pause.
STOP
Stop playing and quit.
PREVIOUS and NEXT
Seek backward/forward 1 minute.
ZOOMIN and ZOOMOUT
Change video zoom.

If you miss some older key bindings, look at et ¢/ r est or e- ol d- bi ndi ngs. conf in the mpv git repository.

Mouse Control

Ctrl+left click
Pan while holding the button, keeping the clicked part of the video under the cursor.
Left double click
Toggle fullscreen on/off.
Right click
Toggle pause on/off.
Forward/Back button
Skip to next/previous entry in playlist.
Wheel up/down
Decrease/increase volume.



Wheel left/right
Seek forward/backward 10 seconds.
Ctrl+Wheel up/down
Change video zoom keeping the part of the video hovered by the cursor under it.

Context Menu

Warning

This feature is experimental. It may not work with all VOs. A libass based fallback may be
implemented in the future.

Context Menu is a menu that pops up on the video window on user interaction (mouse right click, etc.).

To use this feature, you need to fill the nenu- dat a property with menu definition data, and add a keybinding
to run the cont ext - menu command, which can be done with a user script.



USAGE

Command line arguments starting with - are interpreted as options, everything else as filenames or URLs. All
options except flag options (or choice options which include yes) require a parameter in the form
--option=val ue.

One exception is the lone - (without anything else), which means media data will be read from stdin. Also, - -
(without anything else) will make the player interpret all following arguments as filenames, even if they start
with - . (To play a file named -, you need touse . / -.)

Every flag option has a no-flag counterpart, e.g. the opposite of the - - f s option is --no-fs. --fs=yes is
same as--fs,--fs=noisthe sameas--no-fs.

If an option is marked as (XXX only), it will only work in combination with the XXX option or if XXX is compiled
in.

L egacy option syntax

The - - opti on=val ue syntax is not strictly enforced, and the alternative legacy syntax - opti on val ue
and - opti on=val ue will also work. This is mostly for compatibility with MPlayer. Using these should be
avoided. Their semantics can change any time in the future.

For example, the alternative syntax will consider an argument following the option a filename. npv -fs no
will attempt to play a file named no, because - - f s is a flag option that requires no parameter. If an option
changes and its parameter becomes optional, then a command line using the alternative syntax will break.

Until mpv 0.31.0, there was no difference whether an option started with - - or a single -. Newer mpv
releases strictly expect that you pass the option value after a =. For example, before
mpv --log-file f.txt would write a log to .t xt, but now this command line fails, as - -1 og-file
expects an option value, and f . t xt is simply considered a normal file to be played (as in npv f.txt).

The future plan is that - opt i on val ue will not work anymore, and options with a single - behave the same
as - - options.

Escaping spaces and other special characters

Keep in mind that the shell will partially parse and mangle the arguments you pass to mpv. For example, you
might need to quote or escape options and filenames:

npv "filename with spaces.nkv" --title="wi ndowtitle"

It gets more complicated if the suboption parser is involved. The suboption parser puts several options into a
single string, and passes them to a component at once, instead of using multiple options on the level of the
command line.

The suboption parser can quote strings with " and [ . . . ] . Additionally, there is a special form of quoting with
% %described below.

For example, assume the hypothetical f oo filter can take multiple options:
npv test.nkv --vf=foo:optionl=val uel: option2:opti on3=val ue3, bar

This passes opti onl and opti on3 to the f oo filter, with opt i on2 as flag (implicitly opt i on2=yes), and
adds a bar filter after that. If an option contains spaces or characters like , or:, you need to quote them:

npv ' --vf=foo:optionl="option value with spaces", bar'

Shells may actually strip some quotes from the string passed to the commandline, so the example quotes the
string twice, ensuring that mpv receives the " quotes.

The[...] form of quotes wraps everything between [ and ] . It's useful with shells that don't interpret these
characters in the middle of an argument (like bash). These quotes are balanced (since mpv 0.9.0): the [ and
] nest, and the quote terminates on the last | that has no matching [ within the string. (For example,
[a[ b] c] resultsina[ b] c.)

The fixed-length quoting syntax is intended for use with external scripts and programs.



It is started with %and has the following format:

%string_of length n

Examples

mpv ' --vf=foo:optionl=041%uoted text' test.avi
Or in a script:
npv --vf=foo: optionl=% expr |ength "$SNAME"" % SNAME" test. avi

Note: where applicable with JSON-IPC, %%is the length in UTF-8 bytes, after decoding the JSON data.

Suboptions passed to the client APl are also subject to escaping. Using npv_set _option_string() is
exactly like passing - - nane=dat a to the command line (but without shell processing of the string). Some
options support passing values in a more structured way instead of flat strings, and can avoid the suboption
parsing mess. For example, - - vf supports MPV_FORMAT _NODE, which lets you pass suboptions as a nested
data structure of maps and arrays.

Paths

Some care must be taken when passing arbitrary paths and filenames to mpv. For example, paths starting
with - will be interpreted as options. Likewise, if a path contains the sequence ://, the string before that
might be interpreted as protocol prefix, even though : / / can be part of a legal UNIX path. To avoid problems
with arbitrary paths, you should be sure that absolute paths passed to mpv start with / , and prefix relative
paths with . /.

Using the fi | e: // pseudo-protocol is discouraged, because it involves strange URL unescaping rules.

The name - itself is interpreted as stdin, and will cause mpv to disable console controls. (Which makes it
suitable for playing data piped to stdin.)

The special argument - - can be used to stop mpv from interpreting the following arguments as options.

For paths passed to mpv suboptions (options that have multiple : and ,-separated values), the situation is
further complicated by the need to escape special characters. To work around this, the path can instead be
wrapped in the "fixed-length" syntax, e.g. %%t ri ng_of _| engt h_n (see above).

When using the libmpv API, you should strictly avoid using npv_comrand_stri ng for invoking the
| oadfi | e command, and instead prefer e.g. npv_comand to avoid the need for filename escaping.

The same applies when you're using the scripting API, where you should avoid using np. conmand, and
instead prefer using "separate parameter" APIs, such as np. conmandv and np. conmand_nat i ve.

Some mpv options will interpret special meanings for paths starting with ~, making it easy to dynamically find
special directories, such as referring to the current user's home directory or the mpv configuration directory.

When using the special ~ prefix, there must always be a trailing / after the special path prefix. In other words,
~ doesn't work, but ~/ will work.

The following special paths/keywords are currently recognized:

Warning

Beware that if - - no- confi g is used, all of the "config directory"-based paths (~~/, ~~hone/ and
~~gl obal /) will be empty strings.



This means that ~~hone/ would expand to an empty string, and that sub-paths such as
~~hone/ f oo/ bar" would expand to a relative path (f oo/ bar), which may not be what you

expected.

Furthermore, any commands that search in config directories will fail to find anything, since there
won't be any directories to search in.

Be sure that your scripts can handle these "no config" scenarios.

Name Meaning

=/ The current user's home directory (equivalent to ~/ and $HOVE/ in terminal
environments).

~~/ If the sub-path exists in any of mpv's config directories, then the path of the existing
file/dir is returned. Otherwise this is equivalent to ~~hone/ .

~~home/ mpv's config dir (for example ~/ . confi g/ npv/).

~~gl obal / The global config path (such as / et ¢/ npv), if available (not on win32).

~~o0sxbundl e/ The macOS bundle resource path (macOS only).

~~deskt op/ The path to the desktop (win32, macQOS).

~~exe_dir/ The path to the directory containing npv. exe (for config file purposes, $MPV_HOVE
will override this) (win32 only).

~~cache/ The path to application cache data (~/ . cache/ npv/ ). On some platforms, this will
be the same as ~~hone/ .

~~st at e/ The path to application state data (~/ . | ocal / st at e/ npv/ ). On some platforms,
this will be the same as ~~hone/ .

~~ol d_hone/ Do not use.

Per-File Options

When playing multiple files, any option given on the command line usually affects all files. Example:

nmpv --a filel.nkv --b file2.nkv --c

Active options

filel.mkv

--a --b --c

file2.mkv

--a --b --c

(This is different from MPlayer and mplayer2.)
Also, if any option is changed at runtime (via input commands), they are not reset when a new file is played.

Sometimes, it is useful to change options per-file. This can be achieved by adding the special per-file
markers - - { and - -} . (Note that you must escape these on some shells.) Example:

mpv --a filel.nkv --b --\{ --c file2.nkv --d file3.nkv --e --\} filed4.nkv --f

File Active options
--a --b --f

filel.mkv




File Active options
file2.mkv --a--b--f --c --d --e
file3.mkv --a --b --f --c --d --e
file4.mkv --a --b --f

Additionally, any file-local option changed at runtime is reset when the current file stops playing. If option - - ¢
is changed during playback of fil e2. nkv, it is reset when advancing to fi |l e3. nkv. This only affects
file-local options. The option - - a is never reset here.

List Options

Some options which store lists of option values can have action suffixes. For example, the
--di spl ay-t ags option takes a , -separated list of tags, but the option also allows you to append a single
tag with - - di spl ay-t ags- append, and the tag nhame can for example contain a literal , without the need
for escaping.

String list and path list options

String lists are separated by , . The strings are not parsed or interpreted by the option system itself. However,
most path or file list options use : (Unix) or ; (Windows) as separator, instead of , .

They support the following operations:

Suffix Meaning
-set Set a list of items (using the list separator, escaped with backslash)
-append Append single item (does not interpret escapes)
-add Append 1 or more items (same syntax as -set)
-pre Prepend 1 or more items (same syntax as -set)
-clr Clear the option (remove all items)
-del Delete 1 or more items if present (same syntax as -set)
-remove Delete item if present (does not interpret escapes)
-toggle Append an item, or remove it if it already exists (no escapes)

- append is meant as a simple way to append a single item without having to escape the argument (you may
still need to escape on the shell level).

Keyl/value list options

A keylvalue list is a list of key/value string pairs. In programming languages, this type of data structure is
often called a map or a dictionary. The order normally does not matter, although in some cases the order
might matter.

They support the following operations:

Suffix Meaning
-set Set a list of items (using , as separator)
-append Append a single item (escapes for the key, no escapes for the value)
-add Append 1 or more items (same syntax as -set)
-clr Clear the option (remove all items)
-del Delete 1 or more keys if present (same syntax as -set)
-remove Delete item by key if present (does not interpret escapes)




Keys are unique within the list. If an already present key is set, the existing key is removed before the new
value is appended.

If you want to pass a value without interpreting it for escapes or , , it is recommended to use the - append
variant. When using libmpv, prefer using MPV_FORMAT _NODE_MAP; when using a scripting backend or the
JSON IPC, use an appropriate structured data type.

Prior to mpv 0.33, : was also recognized as separator by - set .

Object settings list options

This is a very complex option type for some options, such as - - af and - - vf . They often require complicated
escaping. See VIDEO FILTERS for details.

They support the following operations:

Suffix Meaning
-set Set a list of items (using, as separator)
-append Append single item
-add Append 1 or more items (Ssame syntax as -set)
-pre Prepend 1 or more items (same syntax as -set)
-clr Clear the option (remove all items)
-remove Delete 1 or items if present (same syntax as -set)
-toggle Append an item, or remove it if it already exists
-help Pseudo operation that prints a help text to the terminal
General

Without suffix, the operation used is normally - set .

Some operations like - add and - pr e specify multiple items, but be aware that you may need to escape the
arguments. - append accepts a single, unescaped item only (so the , separator will not be interpreted and is
passed on as part of the value).

Some options (like - -sub-file,--audio-file,--glsl-shader) are aliases for the proper option with
- append action. For example, - - sub-fi | e is an alias for - - sub- fi | es- append.

Options of this type can be changed at runtime using the change- | i st command, which takes the suffix
(without the - ) as separate operation parameter.

An object settings list can hold up to 100 elements.



CONFIGURATION FILES

L ocation and Syntax

You can put all of the options in configuration files which will be read every time mpv is run. The system-wide
configuration file 'mpv.conf' is in your configuration directory (e.g./ et ¢/ npv or / usr/ 1 ocal / et ¢/ npv), the
user-specific one is ~/ . conf i g/ npv/ npv. conf . For details and platform specifics (in particular Windows
paths) see the FILES section.

User-specific options override system-wide options and options given on the command line override both.
The syntax of the configuration files is opti on=val ue. Everything after a # is considered a comment.
Options that work without values can be enabled by setting them to yes and disabled by setting them to no,
and if the value is omitted, yes is implied. Even suboptions can be specified in this way.

Example configuration file

# Don't allow new wi ndows to be |arger than the screen.
autofit-1larger=100%100%

# Enabl e hardware decoding if available, =yes is inplied.
hwdec

# Spaces don't have to be escaped.

osd- pl ayi ng-nsg=Fi l e: ${fil enane}

Escaping special characters

This is done like with command line options. A config entry can be quoted with ", ', as well as with the
fixed-length syntax (%m%) mentioned before. This is like passing the exact contents of the quoted string as a
command line option. C-style escapes are currently _not_ interpreted on this level, although some options do
this manually (this is a mess and should probably be changed at some point). The shell is not involved here,
so option values only need to be quoted to escape # anywhere in the value, ", "' or %at the beginning of the
value, and leading and trailing whitespace.

Putting Command Line Options into the Configuration File

Almost all command line options can be put into the configuration file. Here is a small guide:

Option Configuration file entry
--fl ag flag
-opt val opt =val
- - opt =val opt =val
-opt "has spaces” opt =has spaces




File-specific Configuration Files

You can also write file-specific configuration files. If you wish to have a configuration file for a file called
'video.avi', create a file named ‘video.avi.conf' with the file-specific options in it and put it in
~/ . confi g/ mpv/ . You can also put the configuration file in the same directory as the file to be played. Both
require you to set the --use-fil edir-conf option (either on the command line or in your global config
file). If a file-specific configuration file is found in the same directory, no file-specific configuration is loaded
from ~/.config/npv. In addition, the --use-filedir-conf option enables directory-specific
configuration files. For this, mpv first tries to load a mpv.conf from the same directory as the file played and
then tries to load any file-specific configuration.

Profiles

To ease working with different configurations, profiles can be defined in the configuration files. A profile starts
with its name in square brackets, e.g. [ my- profil e] . All following options will be part of the profile. A
description (shown by --profil e=hel p) can be defined with the profil e-desc option. To end the
profile, start another one or use the profile name def aul t to continue with normal options.

You can list profiles with --profile=help, and show the contents of a profile with
--show prof i | e=<nane> (replace <name> with the profile name). You can apply profiles on start with the
- - profil e=<name> option, or at runtime with the appl y- profi | e <name> command.

Example mpv config file with profiles

# normal top-level option
ful |l screen=yes

# a profile that can be enabled with --profil e=big-cache
[ bi g- cache]

cache=yes

demuxer - max- byt es=512M B

denuxer - r eadahead- secs=20

[ net wor k]

profil e-desc="profile for content over network"
f or ce- wi ndow=i mredi at e

# you can al so include other profiles

profil e=bi g- cache

[ reduce-j udder]
vi deo- sync=di spl ay-resanpl e
i nt er pol ati on=yes

# using a profile again extends it
[ net wor k]

demuxer - max- back- byt es=512M B

# reference a builtin profile
profil e=f ast

Runtime profiles

Profiles can be set at runtime with appl y- pr of i | e command. Since this operation is "destructive" (every
item in a profile is simply set as an option, overwriting the previous value), you can't just enable and disable
profiles again.



As a partial remedy, there is a way to make profiles save old option values before overwriting them with the
profile  values, and then restoring the old wvalues at a later point using
appl y-profile <profil e-nane> restore.

This can be enabled with the pr of i | e-r est or e option, which takes one of the following options:

def aul t
Does nothing, and nothing can be restored (default).

copy
When applying a profile, copy the old values of all profile options to a backup before setting them
from the profile. These options are reset to their old values using the backup when restoring.

Every profile has its own list of backed up values. If the backup already exists (e.g. if
appl y-profil e nanme was called more than once in a row), the existing backup is no changed.
The restore operation will remove the backup.

It's important to know that restoring does not "undo" setting an option, but simply copies the old
option value. Consider for example vf - add, appends an entry to vf. This mechanism will simply
copy the entire vf list, and does _not_ execute the inverse of vf - add (that would be vf - r enove)
on restoring.

Note that if a profile contains recursive profiles (via the profi |l e option), the options in these
recursive profiles are treated as if they were part of this profile. The referenced profile's backup list
is not used when creating or using the backup. Restoring a profile does not restore referenced
profiles, only the options of referenced profiles (as if they were part of the main profile).

copy- equal
Similar to copy, but restore an option only if it has the same value as the value effectively set by the

profile. This tries to deal with the situation when the user does not want the option to be reset after
interactively changing it.

Example

[ sonet hi ng]
profil e-rest ore=copy-equal
vf-add=rotate=PI/2 # rotate by 90 degrees

Then running these commands will result in behavior as commented:

set vf vflip

appl y-profil e sonething

vf add hflip

appl y-profil e sonething

# vf == vflip,rotate=PI/2,hflip,rotate=PI/2
appl y-profile sonething restore

# vf == vflip

Conditional auto profiles

Profiles which have the profil e-cond option set are applied automatically if the associated condition
matches (unless auto profiles are disabled). The option takes a string, which is interpreted as Lua
expression. If the expression evaluates as truthy, the profile is applied. If the expression errors or evaluates
as falsy, the profile is not applied. This Lua code execution is not sandboxed.



Any variables in condition expressions can reference properties. If an identifier is not already defined by Lua
or mpyv, it is interpreted as property. For example, pause would return the current pause status. You cannot
reference properties with - this way since that would denote a subtraction, but if the variable name contains
any _ characters, they are turned into -. For example, pl ayback_ti ne would return the property
pl ayback-ti me.

A more robust way to access properties is using p. property_name or
get ("property-nanme”, default_val ue). The automatic variable to property magic will break if a new
identifier with the same name is introduced (for example, if a function named pause() were added, pause
would return a function value instead of the value of the pause property).

Note that if a property is not available, it will return ni | , which can cause errors if used in expressions. These
are logged in verbose mode, and the expression is considered to be false.

Whenever a property referenced by a profile condition changes, the condition is re-evaluated. If the return
value of the condition changes from falsy or error to truthy, the profile is applied.

This mechanism tries to "unapply" profiles once the condition changes from truthy to falsy or error. If you
want to use this, you need to set pr of i | e-r est or e for the profile. Another possibility it to create another
profile with an inverse condition to undo the other profile.

Recursive profiles can be used. But it is discouraged to reference other conditional profiles in a conditional
profile, since this can lead to tricky and unintuitive behavior.

Example
Make only HD video look funny:

[ sonet hi ng]

profil e-desc=HD vi deo sucks
profile-cond=wi dth >= 1280
hue=- 50

Make only videos containing "youtube™ or "youtu.be" in their path brighter:

[ yout ube]
profil e-cond=pat h: find(' yout u% ?be')
gamma=20

If you want the profile to be reverted if the condition goes to false again, you can set
profile-restore:

[ sonet hi ng]

profil e-desc=Mess up video when entering fullscreen
profil e-cond=full screen

profil e-restore=copy

vf-add=rotate=PI/2 # rotate by 90 degrees

This appends the rot at e filter to the video filter chain when entering fullscreen. When leaving
fullscreen, the vf option is set to the value it had before entering fullscreen. Note that this would also
remove any other filters that were added during fullscreen mode by the user. Avoiding this is trickier,
and could for example be solved by adding a second profile with an inverse condition and operation:

[ sonet hi ng]
profil e-cond=full screen
vf-add=@ot:rotate=Pl/2



[ sonet hi ng-i nv]
profil e-cond=not fullscreen
vf-renmove=@ ot

Warning

Every time an involved property changes, the condition is evaluated again. If your condition uses
p. pl ayback_ti me for example, the condition is re-evaluated approximately on every video frame.
This is probably slow.

This feature is managed by an internal Lua script. Conditions are executed as Lua code within this script. Its
environment contains at least the following things:
(function environment table)
Every Lua function has an environment table. This is used for identifier access. There is ho named Lua
symbol for it; it is implicit.

The environment does "magic" accesses to mpv properties. If an identifier is not already defined in _G it
retrieves the mpv property of the same name. Any occurrences of _ in the name are replaced with -
before reading the property. The returned value is as retrieved by np. get _property_nati ve(nane).
Internally, a cache of property values, updated by observing the property is used instead, so properties
that are not observable will be stuck at the initial value forever.

If you want to access properties, that actually contain _ in the name, use get () (which does not perform
transliteration).

Internally, the environment table has a __i ndex meta method set, which performs the access logic.

A "magic" table similar to the environment table. Unlike the latter, this does not prefer accessing
variables defined in _G- it always accesses properties.

get(nane [, def])

Read a property and return its value. If the property value is ni | (e.g. if the property does not exist), def
is returned.

This is superficially similar to np. get _property_nati ve( nane). An important difference is that this
accesses the property cache, and enables the change detection logic (which is essential to the dynamic
runtime behavior of auto profiles). Also, it does not return an error value as second return value.

The "magic" tables mentioned above use this function as backend. It does not perform the _
transliteration.

In addition, the same environment as in a blank mpv Lua script is present. For example, mat h is defined and
gives access to the Lua standard math library.

Warning

This feature is subject to change indefinitely. You might be forced to adjust your profiles on mpv
updates.



L egacy auto profiles

Some profiles are loaded automatically using a legacy mechanism. The following example demonstrates this:

Auto profile loading

[ ext ensi on. mkv]

profil e-desc="profile for .nkv files"
vf=vflip

The profile name follows the schemat ype. name, where type can be pr ot ocol for the input/output protocol

in use (see - -1i st-protocol s), and ext ensi on for the extension of the path of the currently played file
(not the file format).

This feature is very limited, and is considered soft-deprecated. Use conditional auto profiles.



Using mpv from other programs or scripts

There are three choices for using mpv from other programs or scripts:

1. Calling it as UNIX process. If you do this, do not parse terminal output. The terminal output is
intended for humans, and may change any time. In addition, terminal behavior itself may change
any time. Compatibility cannot be guaranteed.

Your code should work even if you pass - - t er m nal =no. Do not attempt to simulate user input by
sending terminal control codes to mpv's stdin. If you need interactive control, using
--input-ipc-server or--input-ipc-client isrecommended. This gives you access to the
JSON IPC over unix domain sockets (or named pipes on Windows).

Depending on what you do, passing - - no-confi g or --config-dir may be a good idea to
avoid conflicts with the normal mpv user configuration intended for CLI playback.

Using - - i nput -i pc-server or--input-ipc-client is also suitable for purposes like remote
control (however, the IPC protocol itself is not "secure" and not intended to be so).

2. Using libmpv. This is generally recommended when mpv is used as playback backend for a
completely different application. The provided C API is very close to CLI mechanisms and the
scripting API.

Note that even though libmpv has different defaults, it can be configured to work exactly like the CLI
player (except command line parsing is unavailable).

See EMBEDDING INTO OTHER PROGRAMS (LIBMPV).

3. As a user script (LUA SCRIPTING, JAVASCRIPT, C PLUGINS). This is recommended when the
goal is to "enhance" the CLI player. Scripts get access to the entire client API of mpv.
This is the standard way to create third-party extensions for the player.

All these access the client API, which is the sum of the various mechanisms provided by the player core, as
documented here: OPTIONS, List of Input Commands, Properties, List of events (also see C API), Hooks.



TAKING SCREENSHOTS

Screenshots of the currently played file can be taken using the 'screenshot' input mode command, which is
by default bound to the s key. Files named npv- shot NNNN. j pg will be saved in the working directory, using
the first available number - no files will be overwritten. In pseudo-GUIl mode, the screenshot will be saved
somewhere else. See PSEUDO GUI MODE.

A screenshot will usually contain the unscaled video contents at the end of the video filter chain and subtitles.
By default, S takes screenshots without subtitles, while s includes subtitles.

Unlike with MPlayer, the scr eenshot video filter is not required. This filter was never required in mpv, and
has been removed.



TERMINAL STATUSLINE

During playback, mpv shows the playback status on the terminal. It looks like something like this:

AV: 00:03:12 / 00:24:25 (13% A-V: -0.000

The status line can be overridden with the - -t er m st at us- nsg option.

The following is a list of things that can show up in the status line. Input properties, that can be used to get
the same information manually, are also listed.

AV: or V: (video only) or A: (audio only)
The current time position in HH: MM SS format (pl ayback-t i ne property)
The total file duration (absent if unknown) (dur at i on property)

Playback speed, e.g. x2. 0. Only visible if the speed is not normal. This is the user-requested speed,
and not the actual speed (usually they should be the same, unless playback is too slow). (speed

property.)

Playback percentage, e.g. (13% . How much of the file has been played. Normally calculated out of
playback position and duration, but can fallback to other methods (like byte position) if these are not
available. (per cent - pos property.)

The audio/video sync as A-V: 0. 000. This is the difference between audio and video time. Normally
it should be 0 or close to 0. If it's growing, it might indicate a playback problem. (avsync property.)

Total A/V sync change, e.g. ct: -0. 417. Normally invisible. Can show up if there is audio "missing",
or not enough frames can be dropped. Usually this will indicate a problem. (t ot al - avsync- change

property.)
Encoding state in{. . . }, only shown in encoding mode.

Display sync state. If display sync is active (di spl ay-sync-active property), this shows
DS: 2.500/ 13, where the first number is average number of vsyncs per video frame (e.g. 2.5 when
playing 24Hz videos on 60Hz screens), which might jitter if the ratio doesn't round off, or there are
mistimed frames (vsync-rati 0), and the second number of estimated number of vsyncs which took
too long (vo- del ayed- f r ame- count property). The latter is a heuristic, as it's generally not possible
to determine this with certainty.

Dropped frames, e.g. Dr opped: 4. Shows up only if the count is not 0. Can grow if the video framerate
is higher than that of the display, or if video rendering is too slow. May also be incremented on "hiccups”
and when the video frame couldn't be displayed on time. (f r ane- dr op- count property.) If the
decoder drops frames, the number of decoder-dropped frames is appended to the display as well, e.g.:
Dr opped: 4/ 34. This happens only if decoder frame dropping is enabled with the - - f ramedr op
options. (decoder - f r ame- dr op- count property.)

Cache state, e.g. Cache:  2s/ 134KB. Visible if the stream cache is enabled. The first value shows
the amount of video buffered in the demuxer in seconds, the second value shows the estimated size of
the buffered amount in kilobytes. (dermuxer-cache-durati on and dernuxer-cache-state
properties.)



LOW LATENCY PLAYBACK

mpv is optimized for normal video playback, meaning it actually tries to buffer as much data as it seems to
make sense. This will increase latency. Reducing latency is possible only by specifically disabling features
which increase latency.

The builtin | ow- | at ency profile tries to apply some of the options which can reduce latency. You can use
--profile=lowlatency to apply all of them. You <can |Ilist the contents with
--show profil e=l ow | atency (some of the options are quite obscure, and may change every mpv
release).

Be aware that some of the options can reduce playback quality.

Most latency is actually caused by inconvenient timing behavior. You can disable this with - - unt i ned, but it
will likely break, unless the stream has no audio, and the input feeds data to the player at a constant rate.

Another common problem is with MJPEG streams. These do not signal the correct framerate. Using
--untinedor--correct-pts=no --container-fps-override=60 might help.

For livestreams, data can build up due to pausing the stream, due to slightly lower playback rate, or
"buffering”" pauses. If the demuxer cache is enabled, these can be skipped manually. The experimental
dr op- buf f er s command can be used to discard any buffered data, though it's very disruptive.

In some cases, manually tuning TCP buffer sizes and such can help to reduce latency.

Additional options that can be tried:

» --opengl - gl fi ni sh=yes, can reduce buffering in the graphics driver
» --opengl - swapi nt er val =0, same
* --VO=XV, same

» without audio - - f ramedr op=no - - speed=1. 01 may help for live sources (results can be mixed)



RESUMING PLAYBACK

mpv is capable of storing the playback position of the currently playing file and resume from there the next
time that file is played. This is done with the commands qui t - wat ch-1 at er (bound to Shift+Q by default)
andwrite-wat ch-1 ater-confi g, and with the - - save- posi ti on-on- qui t option.

The difference between always quitting with a key bound to quit-watch-later and using
--save-posi tion-on-quit isthatthe latter will save the playback position even when mpv is closed with
a method other than a keybinding, such as clicking the close button in the window title bar. However if mpv is
terminated abruptly and doesn't have the time to save, then the position will not be saved. For example, if you
shutdown your system without closing mpv beforehand.

mpv also stores options other than the playback position when they have been modified after playback
began, for example the volume and selected audio/subtitles, and restores their values the next time the file is
played. Which options are saved can be configured with the - - wat ch- | at er - opt i ons option.

When playing multiple playlist entries, mpv checks if one them has a resume config file associated, and if it
finds one it restarts playback from it. For example, if you use qui t - wat ch- | at er on the 5th episode of a
show, and later play all the episodes, mpv will automatically resume playback from episode 5.

More options to configure this functionality are listed in Watch Later.



PROTOCOLS

mpv://...

mpv protocol. This is used for starting mpv from URL handler. The protocol is stripped and the rest is
passed to the player as a nhormal open argument. Only safe network protocols are allowed to be opened
this way.

http://...,https://,..

Many network protocols are supported, but the protocol prefix must always be specified. mpv will never
attempt to guess whether a filename is actually a network address. A protocol prefix is always required.

Note that not all prefixes are documented here. Undocumented prefixes are either aliases to
documented protocols, or are just redirections to protocols implemented and documented in FFmpeg.

dat a: is supported, but needs to be in the format data: //. This is done to avoid ambiguity with
filenames. You can also prefix it with | avf:// orffnpeg://.

ytdl://...

By default, the youtube-dl hook script only looks at http(s) URLs. Prefixing an URL with yt dl : // forces
it to be always processed by the script. This can also be used to invoke special youtube-dl functionality
like playing a video by ID or invoking search.

Keep in mind that you can't pass youtube-dl command line options by this, and you have to use
--ytdl -raw opti ons instead.

Play data from stdin.
snb: // PATH

Play a path from Samba share. (Requires FFmpeg support.)
bd://[title][/device] --bluray-devi ce=PATH

Play a Blu-ray disc. Since libbluray 1.0.1, you can read from ISO files by passing them to
- - bl uray- devi ce.

title can be: longest or first (selects the default playlist); npl s/ <nunber> (selects
<number>.mpls playlist); <nunmber > (select playlist with the same index). mpv will list the available
playlists on loading.

bl uray:// is an alias.
dvd://[title][/device] --dvd-devi ce=PATH

Play a DVD. DVD menus are not supported. If no title is given, the longest title is auto-selected. Without
- - dvd- devi ce, it will probably try to open an actual optical drive, if available and implemented for the
0sS.

dvdnav:// is an old alias for dvd: / / and does exactly the same thing.
dvb: / /[ cardnunber @ channel --dvbin-...

Digital TV via DVB. (Linux only.)
nf://[@istfile|filemask|glob|printf-format] --nf-...

Play a series of images as video.

If the URL path begins with @ it is interpreted as the path to a file containing a list of image paths
separated by newlines. If the URL path contains , , it is interpreted as a list of image paths separated by
, . If the URL path does not contain %and if on POSIX platforms, is interpreted as a glob, and * is
automatically appended if it was not specified. Otherwise, the printf sequences % . ] [ NUM d, where
NUM is one, two, or three decimal digits, and %% and are interpreted. For example,
nf://image-%l.jpg plays files like i mage- 1. ] pg, i mage-2.jpg and i mage- 10. j pg, provided
that there are no big gaps between the files.



cdda:/ /[ devi ce] --cdda-devi ce=PATH

Play CD. You can select a specific range of tracks to play by using the - - st art and - - end options and
specifying chapters. Navigating forwards and backwards through tracks can also be done by navigating
through chapters (PGUP and PGDOMN in the default keybinds).

Example
npv cdda:// --start=#4 --end=#6

This will start from track 4, play track 5, and then end.

lavf://...

Access any FFmpeg libavformat protocol. Basically, this passed the string after the // directly to
libavformat.

av://type:options

This is intended for using libavdevice inputs. t ype is the libavdevice demuxer nhame, and opti ons is
the (pseudo-)filename passed to the demuxer.

Example
npv av://v4l 2:/dev/videoO --profile=lowlatency --untined

This plays video from the first v4l input with nearly the lowest latency possible. It's a good
replacement for the removed tv:// input. Using - -unti med is a hack to output a captured
frame immediately, instead of respecting the input framerate. (There may be better ways to
handle this in the future.)

avdevi ce: // is an alias.
file://PATH

A local path as URL. Might be useful in some special use-cases. Note that PATH itself should start with a
third / to make the path an absolute path.

appendi ng: / / PATH

Play a local file, but assume it's being appended to. This is useful for example for files that are currently
being downloaded to disk. This will block playback, and stop playback only if no new data was appended
after a timeout of about 2 seconds.

Using this is still a bit of a bad idea, because there is no way to detect if a file is actually being appended,
or if it's still written. If you're trying to play the output of some program, consider using a pipe

(something | npv -). If it really has to be a file on disk, use tail to make it wait forever, e.g.
tail -f -c +0 file.nkv | nmpv -.
fd://123

Read data from the given file descriptor (for example 123). This is similar to piping data to stdin via - , but
can use an arbitrary file descriptor. mpv may modify some file descriptor properties when the stream
layer "opens" it.



fdcl ose://123

Like f d: / /, but the file descriptor is closed after use. When using this you need to ensure that the same
fd URL will only be used once.

edl://[edl specification as in edl-npv.rst]
Stitch together parts of multiple files and play them.
slice://start[-end] @QJRL
Read a slice of a stream.
start and end represent a byte range and accept suffixes such as Ki Band M B. end is optional.
if end starts with +, it is considered as offset from st art .
Only works with seekable streams.

Examples:

mpv slice://1g-2g@ap.ts

This starts reading fromcap.ts after seeking 1 G B, then
reads until reaching 2 G B or end of file.

mpv slice://1g-+2g@ap.ts

This starts reading fromcap.ts after seeking 1 G B, then
reads until reaching 3 G B or end of file.

mpv slice://100m@ppendi ng://cap.ts

This starts reading fromcap.ts after seeking 100M B, then
reads until end of file.
null://

Simulate an empty file. If opened for writing, it will discard all data. The nul | demuxer will specifically
pass autoprobing if this protocol is used (while it's not automatically invoked for empty files).

menory://data
Use the dat a part as source data.
hex: // data

Like menory: //, but the string is interpreted as hexdump.



PSEUDO GUI MODE

mpv has no official GUI, other than the OSC (ON SCREEN CONTROLLER), which is not a full GUI and is not
meant to be. However, to compensate for the lack of expected GUI behavior, mpv will in some cases start
with some settings changed to behave slightly more like a GUI mode.

Currently this happens only in the following cases:

« if started using the npv. deskt op file on Linux (e.g. started from menus or file associations provided by
desktop environments)

« if started from explorer.exe on Windows (technically, if it was started on Windows, and all of the
stdout/stderr/stdin handles are unset)

 started out of the bundle on macOS

« if you manually use - - pl ayer - oper at i on- nrode=pseudo- gui on the command line

This mode applies options from the builtin profile bui | t i n- pseudo- gui , but only if these haven't been set
in the wuser's config file or on the command line, which is the main difference to using
--profile=builtin-pseudo-gui.

The profile is currently defined as follows:

[ builtin-pseudo-gui ]

t erm nal =no

force-w ndow=yes

i dl e=once

screenshot - di rect or y=~~deskt op/

The pseudo- gui profile exists for compatibility. The options in the pseudo- gui profile are applied
unconditionally. In addition, the profile makes sure to enable the pseudo-GUlI mode, so that
--profil e=pseudo- gui works like in older mpv releases:

[ pseudo- gui ]
pl ayer - oper ati on- mode=pseudo- gui

Warning

Currently, you can extend the pseudo-gui profile in the config file the normal way. This is
deprecated. In future mpv releases, the behavior might change, and not apply your additional
settings, and/or use a different profile name.



OPTIONS

Track Selection

- -al ang=<I| anguagecode|[, | anguagecode, ...]>

Specify a prioritized list of audio languages to use, as IETF language tags. Equivalent ISO 639-1
two-letter and 1SO 639-2 three-letter codes are treated the same. The first tag in the list that matches
track's language in the file will be used. A track that matches more subtags will be preferred over one

that matches fewer. See also - - ai d.

This is a string list option. See List Options for details.

Examples

e npv dvd://1 --al ang=hu, en chooses the Hungarian language track on a DVD and
falls back on English if Hungarian is not available.

e npv --al ang=j pn exanpl e. nkv plays a Matroska file with Japanese audio.

- -sl ang=<I| anguagecode|[, | anguagecode, ...]>
Analogous to - - al ang, for subtitle tracks.

This is a string list option. See List Options for details.

Examples

e npv dvd://1 --slang=hu, en chooses the Hungarian subtitle track on a DVD and falls
back on English if Hungarian is not available.

e npv --slang=j pn exanpl e. nkv plays a Matroska file with Japanese subtitles.

e npv --slang=pt-BR exanpl e. nkv plays a Matroska file with Brazilian Portuguese
subtitles if available, and otherwise any Portuguese subtitles.

--vlang=<...>
Analogous to - - al ang and - - sl ang, for video tracks.

This is a string list option. See List Options for details.
- - ai d=<I D] aut o] no>

Select audio track. aut o selects the default, no disables audio. See also - - al ang. mpv normally prints

available audio tracks on the terminal when starting playback of a file.
- - audi o is an alias for - - ai d.

- - ai d=no or - - audi o=no disables audio playback.

Note
The track selection options (- - ai d but also - - si d and the others) sometimes expose behavior
that may appear strange. Also, the behavior tends to change around with each mpv release.

The track selection properties will return the option value outside of playback (as expected), but
during playback, the affective track selection is returned. For example, with - - ai d=aut o, the



ai d property will suddenly return 2 after playback initialization (assuming the file has at least 2
audio tracks, and the second is the default).

At mpv 0.32.0 (and some releases before), if you passed a track value for which a corresponding
track didn't exist (e.g. - - ai d=2 and there was only 1 audio track), the ai d property returned no.
However if another audio track was added during playback, and you tried to set the ai d property
to 2, nothing happened, because the ai d option still had the value 2, and writing the same value
has no effect.

With mpv 0.33.0, the behavior was changed. Now track selection options are reset to aut o at
playback initialization, if the option had tries to select a track that does not exist. The same is
done if the track exists, but fails to initialize. The consequence is that unlike before mpv 0.33.0,
the user's track selection parameters are clobbered in certain situations.

Also since mpv 0.33.0, trying to select a track by number will strictly select this track. Before this
change, trying to select a track which did not exist would fall back to track default selection at
playback initialization. The new behavior is more consistent.

Setting a track selection property at runtime, and then playing a new file might reset the track
selection to defaults, if the fingerprint of the track list of the new file is different.

Be aware of tricky combinations of all of all of the above: for example,
mpv  --aid=2 file with 2 audio _tracks.nkv file with_1 audio_track. nkv
would first play the correct track, and the second file without audio. If you then go back the first
file, its first audio track will be played, and the second file is played with audio. If you do the same
thing again but instead of using - - ai d=2 you run set ai d 2 while the file is playing, then
changing to the second file will play its audio track. This is because runtime selection enables the
fingerprint heuristic.

Most likely this is not the end.

--si d=<I D] aut o] no>
Display the subtitle stream specified by <l D>. aut o selects the default, no disables subtitles.

- - sub is an alias for - - si d.
- - si d=no or - - sub=no disables subtitle decoding.
- -vi d=<I D] aut o] no>
Select video channel. aut o selects the default, no disables video.
- -vi deo is an alias for - - vi d.
- -vi d=no or - - vi deo=no disables video playback.

If video is disabled, mpv will try to download the audio only if media is streamed with youtube-dl,
because it saves bandwidth. This is done by setting the ytdl_format to "bestaudio/best” in the
ytdl_hook.lua script.

--edition=<ID aut o>

(Matroska files only) Specify the edition (set of chapters) to use, where 0 is the first. If set to aut o (the
default), mpv will choose the first edition declared as a default, or if there is no default, the first edition
defined.

--track-aut o-sel ecti on=<yes| no>

Enable the default track auto-selection (default: yes). Enabling this will make the player select streams
according to - - ai d, - - al ang, and others. If it is disabled, no tracks are selected. In addition, the player
will not exit if no tracks are selected, and wait instead (this wait mode is similar to pausing, but the pause
option is not set).

This is useful with - - | avf i - conpl ex: you can start playback in this mode, and then set select tracks at
runtime by setting the filter graph. Note that if - - | avfi - conpl ex is set before playback is started, the
referenced tracks are always selected.



- -subs-wi t h- mat chi ng- audi o=<yes]| f or ced| no>
When autoselecting a subtitle track, select it even if the selected audio stream matches you preferred
subtitle language (default: yes). If this option is set to no, then no subtitle track that matches the audio
language will ever be autoselected by mpv regardless of --sl ang or subs-fall back. If set to
f or ced, then only forced subtitles will be selected.

- -subs- mat ch- 0s- | anguage=<yes| no>

When autoselecting a subtitle track, select the track that matches the language of your OS if the audio
stream is in a different language if suitable (default track or a forced track under the right conditions).
Note that if - - sl ang is set, this will be completely ignored (default: yes).

--subs-fal |l back=<yes| def aul t | no>

When autoselecting a subtitle track, if no tracks match your preferred languages, select a full track even
if it doesn't match your preferred subtitle language (default: default). Setting this to default means that
only streams flagged as default will be selected.

--subs-fal | back-f orced=<yes| no| al ways>

When autoselecting a subtitle track, the default value of yes will prefer using a forced subtitle track if the
subtitle language matches the audio language and matches your list of preferred languages. The special
value always will only select forced subtitle tracks and never fallback on a non-forced track. Conversely,
no will never select a forced subtitle track.

Playback Control

--start=<relative tine>
Seek to given time position.

The general format for times is [ +| -] [ [ hh: ] nm ] ss[. n8] . If the time is prefixed with -, the time is
considered relative from the end of the file (as signaled by the demuxer/the file). A + is usually ignored
(but see below).

The following alternative time specifications are recognized:
pp%seeks to percent position pp (0-100).

#c seeks to chapter number c. (Chapters start from 1.)
none resets any previously set option (useful for libmpv).

If --rebase-start-tinme=no is given, then prefixing times with + makes the time relative to the start
of the file. A timestamp without prefix is considered an absolute time, i.e. should seek to a frame with a
timestamp as the file contains it. As a bug, but also a hidden feature, putting 1 or more spaces before the
+ or - always interprets the time as absolute, which can be used to seek to negative timestamps (useful
for debugging at most).

Examples

--start=+56, --start=00: 56

Seeks to the start time + 56 seconds.
--start=-56,--start=-00: 56

Seeks to the end time - 56 seconds.
--start=01: 10: 00

Seeks to 1 hour 10 min.
--start=50%

Seeks to the middle of the file.
--start=30 --end=40



Seeks to 30 seconds, plays 10 seconds, and exits.
--start=-3:20 --1ength=10

Seeks to 3 minutes and 20 seconds before the end of the file, plays 10 seconds, and exits.
--start="#2' --end='#4'

Plays chapters 2 and 3, and exits.

--end=<relative tinme>

Stop at given time. Use - - | engt h if the time should be relative to --start. See --start for valid
option values and examples.

--length=<rel ative tinme>
Stop after a given time relative to the start time. See - - st art for valid option values and examples.

If both --end and --1ength are provided, playback will stop when it reaches either of the two
endpoints.

Obscurity note: this does not work correctly if - - r ebase-start-ti ne=no, and the specified time is
not an "absolute” time, as defined in the - - st art option description.
--rebase-start-ti me=<yes| no>

Whether to move the file start time to 00: 00: 00 (default: yes). This is less awkward for files which start
at a random timestamp, such as transport streams. On the other hand, if there are timestamp resets, the
resulting behavior can be rather weird. For this reason, and in case you are actually interested in the real
timestamps, this behavior can be disabled with no.

- - speed=<0. 01- 100>
Slow down or speed up playback by the factor given as parameter.
If --audi o-pitch-correction (on by default) is used, playing with a speed higher than normal
automatically inserts the scal et enpo2 audio filter.

--pitch=<0.01- 100>
Raise or lower the audio's pitch by the factor given as parameter. Does not affect playback speed.
Playing with an altered pitch automatically inserts the scal et enpo2 audio filter.

Since pitch change is achieved by combining pitch-preserving speed change and resampling, the range
of pitch change is effectively limited by the mi n- speed and max- speed parameters of scal et enpo2:
for example, a m n- speed of 0.25 limits the highest pitch factor to 4 (1/0.25).

In a standard 12-tone scale system, octaves are separated by a factor of 2 whereas semitones are
represented by a factor of 2*(1/12). This means pitches can easily be shifted up or down with a simple
multiplier.

Examples

--pitch=2

Shifts the pitch up a full octave.
--pitch=0.5

Shifts the pitch down an octave.
- - pi tch=1. 498307 (2~ (7/12))

Shifts the pitch up a perfect fifth.
--pi tch=0. 667420 (2~ (-7/12))

Shifts the pitch down a perfect fifth.



--pi tch=1. 059463 (2"(1/12))
Shifts the pitch up a semitone.

--pi t ch=0. 943874 (2"(-1/12))
Shifts the pitch down a semitone.

- - pause

Start the player in paused state.
--shuffle

Play files in random order.
--playlist-start=<auto|index>

Set which file on the internal playlist to start playback with. The index is an integer, with 0 meaning the
first file. The value aut o means that the selection of the entry to play is left to the playback resume
mechanism (default). If an entry with the given index doesn't exist, the behavior is unspecified and might
change in future mpv versions. The same applies if the playlist contains further playlists (don't expect
any reasonable behavior). Passing a playlist file to mpv should work with this option, though. E.g.
mpv playlist.nBu --playlist-start=123 will work as expected, as long as pl ayl i st. nBu
does not link to further playlists.

The value no is a deprecated alias for aut o.
--playlist=<fil enane>

Play files according to a playlist file. Supports some common formats. If no format is detected, it will be
treated as list of files, separated by newline characters. You may need this option to load plaintext files
as a playlist. Note that XML playlist formats are not supported.

This option forces - - denuxer =pl ayl i st to interpret the playlist file. Some playlist formats, notably
CUE and optical disc formats, need to use different demuxers and will not work with this option. They still
can be played directly, without using this option.

You can play playlists directly, without this option. Before mpv version 0.31.0, this option disabled any
security mechanisms that might be in place, but since 0.31.0 it uses the same security mechanisms as
playing a playlist file directly. If you trust the playlist file, you can disable any security checks with
- -l oad- unsaf e- pl ayl i st s. Because playlists can load other playlist entries, consider applying this
option only to the playlist itself and not its entries, using something along these lines:

mpv --{ --playlist=filenanme --1oad-unsafe-playlists --}

Warning

The way older versions of mpv played playlist files via --pl ayl i st was not safe against
maliciously constructed files. Such files may trigger harmful actions. This has been the case for
all versions of mpv prior to 0.31.0, and all MPlayer versions, but unfortunately this fact was not
well documented earlier, and some people have even misguidedly recommended the use of
--pl ayl i st with untrusted sources. Do NOT use - - pl ayl i st with random internet sources or
files you do not trust if you are not sure your mpv is at least 0.31.0.

In particular, playlists can contain entries using protocols other than local files, such as special
protocols like avdevi ce: // (which are inherently unsafe).

--chapt er - mer ge-t hr eshol d=<nunber >

Threshold for merging almost consecutive ordered chapter parts in milliseconds (default: 100). Some
Matroska files with ordered chapters have inaccurate chapter end timestamps, causing a small gap
between the end of one chapter and the start of the next one when they should match. If the end of one



playback part is less than the given threshold away from the start of the next one then keep playing
video normally over the chapter change instead of doing a seek.

--chapt er - seek-t hreshol d=<seconds>
Distance in seconds from the beginning of a chapter within which a backward chapter seek will go to the
previous chapter (default: 5.0). Past this threshold, a backward chapter seek will go to the beginning of
the current chapter instead. A negative value means always go back to the previous chapter.

- - hr-seek=<no| absol ut e| yes| def aul t >

Select when to use precise seeks that are not limited to keyframes. Such seeks require decoding video
from the previous keyframe up to the target position and so can take some time depending on decoding
performance. For some video formats, precise seeks are disabled. This option selects the default choice
to use for seeks; it is possible to explicitly override that default in the definition of key bindings and in
input commands.

no: Never use precise seeks.

absolute: Use precise seeks if the seek is to an absolute position in the file, such as a
chapter seek, but not for relative seeks like the default behavior of arrow keys.

default: Like absol ut e, but enable hr-seeks in audio-only cases. The exact behavior is
implementation specific and may change with new releases (default).

yes: Use precise seeks whenever possible.
always: Same as yes (for compatibility).

- - hr - seek- denuxer - of f set =<seconds>

This option exists to work around failures to do precise seeks (as in - - hr - seek) caused by bugs or
limitations in the demuxers for some file formats. Some demuxers fail to seek to a keyframe before the
given target position, going to a later position instead. The value of this option is subtracted from the time
stamp given to the demuxer. Thus, if you set this option to 1.5 and try to do a precise seek to 60
seconds, the demuxer is told to seek to time 58.5, which hopefully reduces the chance that it erroneously
goes to some time later than 60 seconds. The downside of setting this option is that precise seeks
become slower, as video between the earlier demuxer position and the real target may be unnecessarily
decoded.

--hr-seek-framedrop=<yes| no>
Allow the video decoder to drop frames during seek, if these frames are before the seek target. If this is
enabled, precise seeking can be faster, but if you're using video filters which modify timestamps or add
new frames, it can lead to precise seeking skipping the target frame. This e.g. can break frame
backstepping when deinterlacing is enabled.
Default: yes
--i ndex=<node>
Controls how to seek in files. Note that if the index is missing from a file, it will be built on the fly by
default, so you don't need to change this. But it might help with some broken files.
default: use an index if the file has one, or build it if missing
recreate: don't read or use the file's index

Note

This option only works if the underlying media supports seeking (i.e. not with stdin, pipe, etc).

--1 oad-unsafe-playlists

Load URLs from playlists which are considered unsafe (default: no). This includes special protocols and
anything that doesn't refer to normal files. Local files and HTTP links on the other hand are always
considered safe.



In addition, if a playlist is loaded while this is set, the added playlist entries are not marked as originating
from network or potentially unsafe location. (Instead, the behavior is as if the playlist entries were
provided directly to mpv command line or | oadf i | e command.)

--access-references=<yes| no>

Follow any references in the file being opened (default: yes). Disabling this is helpful if the file is
automatically scanned (e.g. thumbnail generation). If the thumbnail scanner for example encounters a
playlist file, which contains network URLs, and the scanner should not open these, enabling this option
will prevent it. This option also disables ordered chapters, mov reference files, opening of archives, and
a number of other features.

On older FFmpeg versions, this will not work in some cases. Some FFmpeg demuxers might not respect
this option.

This option does not prevent opening of paired subtitle files and such. Use - - aut ol oad-fi | es=no to
prevent this.

This option does not always work if you open non-files (for example using dvd: // di rect ory would
open a whole bunch of files in the given directory). Prefixing the filename with . / if it doesn't start with a
/ will avoid this.

--1 oop-playlist=<Ninf|force|no>, --1oop-playlist
Loops playback Ntimes. A value of 1 plays it one time (default), 2 two times, etc. i nf means forever. no
is the same as 1 and disables looping. If several files are specified on command line, the entire playlist is
looped. - -1 oop-pl ayl i st isthe same as - - | oop- pl ayl i st =i nf.

The f or ce mode is like i nf , but does not skip playlist entries which have been marked as failing. This
means the player might waste CPU time trying to loop a file that doesn't exist. But it might be useful for
playing webradios under very bad network conditions.

--loop-file=<Ninf|no>,--1oop=<N|inf|no>
Loop a single file N times. i nf means forever, no means normal playback. For compatibility,
--loop-fileand--1oop-fil e=yes are also accepted, and are the same as - -1 oop-fil e=i nf.

The difference to - - | oop- pl ayl i st is that this doesn't loop the playlist, just the file itself. If the playlist
contains only a single file, the difference between the two option is that this option performs a seek on
loop, instead of reloading the file.

Note

--1 oop-fil e counts the number of times it causes the player to seek to the beginning of the
file, not the number of full playthroughs. This means - - | oop- fi | e=1 will end up playing the file
twice. Contrast with - - | oop- pl ayl i st, which counts the number of full playthroughs.

- -1 oop is an alias for this option.

--ab-1 oop-a=<ti me>, - - ab-1 oop- b=<ti ne>
Set loop points. If playback passes the b timestamp, it will seek to the a timestamp. Seeking past the b
point doesn't loop (this is intentional).

If a is after b, the behavior is as if the points were given in the right order, and the player will seek to b
after crossing through a. This is different from old behavior, where looping was disabled (and as a bug,
looped back to a on the end of the file).

If either options are set to no (or unset), looping is disabled. This is different from old behavior, where an
unset a implied the start of the file, and an unset b the end of the file.

The loop-points can be adjusted at runtime with the corresponding properties. See also ab-1 oop
command.

--ab-1 oop- count =<N| i nf >



Run A-B loops only N times, then ignore the A-B loop points (default: inf). i nf means that looping goes
on forever. If this option is set to 0, A-B looping is ignored, and even the ab- | oop command will not
enable looping again (the command will show ( di sabl ed) on the OSD message if both loop points are
set, but ab- | oop- count is 0).
- -order ed-chapt er s=<yes| no>
Enable support for Matroska ordered chapters. mpv will load and search for video segments from other
files, and will also respect any chapter order specified for the main file (default; yes).
--ordered-chapters-files=<playlist-file>
Loads the given file as playlist, and tries to use the files contained in it as reference files when opening a
Matroska file that uses ordered chapters. This overrides the normal mechanism for loading referenced
files by scanning the same directory the main file is located in.

Useful for loading ordered chapter files that are not located on the local filesystem, or if the referenced

files are in different directories.

Note: a playlist can be as simple as a text file containing filenames separated by newlines.
--chapters-file=<fil ename>

Load chapters from this file, instead of using the chapter metadata found in the main file.

This accepts a media file (like mkv) or even a pseudo-format like ffmetadata and uses its chapters to
replace the current file's chapters. This doesn't work with OGM or XML chapters directly.

- -sst ep=<sec>
Skip <sec> seconds after every frame.

Note

Without - - hr - seek, skipping will snap to keyframes.

- - st op-pl ayback-on-init-fail ure=<yes| no>
Stop playback if either audio or video fails to initialize (default: no). With no, playback will continue in
video-only or audio-only mode if one of them fails. This doesn't affect playback of audio-only or
video-only files.

--pl ay-direction=<forward| +| backward| - >
Control the playback direction (default: forward). Setting backwar d will attempt to play the file in reverse

direction, with decreasing playback time. If this is set on playback starts, playback will start from the end
of the file. If this is changed at during playback, a hr-seek will be issued to change the direction.

+ and - are aliases for f or war d and backwar d.

The rest of this option description pertains to the backwar d mode.

Note

Backward playback is extremely fragile. It may not always work, is much slower than forward
playback, and breaks certain other features. How well it works depends mainly on the file being
played. Generally, it will show good results (or results at all) only if the stars align.

mpv, as well as most media formats, were designed for forward playback only. Backward playback is
bolted on top of mpv, and tries to make a medium effort to make backward playback work. Depending on
your use-case, another tool may work much better.



Backward playback is not exactly a 1st class feature. Implementation tradeoffs were made, that are bad
for backward playback, but in turn do not cause disadvantages for normal playback. Various possible
optimizations are not implemented in order to keep the complexity down. Normally, a media player is
highly pipelined (future data is prepared in separate threads, so it is available in realtime when the next
stage needs it), but backward playback will essentially stall the pipeline at various random points.

For example, for intra-only codecs are trivially backward playable, and tools built around them may make
efficient use of them (consider video editors or camera viewers). mpv won't be efficient in this case,
because it uses its generic backward playback algorithm, that on top of it is not very optimized.

If you just want to quickly go backward through the video and just show "keyframes", just use forward
playback, and hold down the left cursor key (which on CLI with default config sends many small relative
seek commands).

The implementation consists of mostly 3 parts:

» Backward demuxing. This relies on the demuxer cache, so the demuxer cache should (or must,
didn't test it) be enabled, and its size will affect performance. If the cache is too small or too large,
quadratic runtime behavior may result.

» Backward decoding. The decoder library used (libavcodec) does not support this. It is emulated by
feeding bits of data in forward, putting the result in a queue, returning the queue data to the VO in
reverse, and then starting over at an earlier position. This can require buffering an extreme amount
of decoded data, and also completely breaks pipelining.

» Backward output. This is relatively simple, because the decoder returns the frames in the needed
order. However, this may cause various problems because filters see audio and video going
backward.

Known problems:

« It's fragile. If anything doesn't work, random behavior may occur. In simple cases, the player will
just play nonsense and artifacts. In other cases, it may get stuck or heat the CPU. (Exceeding
memory usage significantly beyond the user-set limits would be a bug, though.)

» Performance and resource usage isn't good. In part this is inherent to backward playback of normal
media formats, and in parts due to implementation choices and tradeoffs.

e This is extremely reliant on good demuxer behavior. Although backward demuxing requires no
special demuxer support, it is required that the demuxer performs seeks reliably, fulfils some
specific requirements about packet metadata, and has deterministic behavior.

« Starting playback exactly from the end may or may not work, depending on seeking behavior and
file duration detection.

« Some container formats, audio, and video codecs are not supported due to their behavior. There is
no list, and the player usually does not detect them. Certain live streams (including TV captures)
may exhibit problems in particular, as well as some lossy audio codecs. h264 intra-refresh is known
not to work due to problems with libavcodec. WAV and some other raw audio formats tend to have
problems - there are hacks for dealing with them, which may or may not work.

» Backward demuxing of subtitles is not supported. Subtitle display still works for some external text
subtitle formats. (These are fully read into memory, and only backward display is needed.) Text
subtitles that are cached in the subtitle renderer also have a chance to be displayed correctly.

» Some features dealing with playback of broken or hard to deal with files will not work fully (such as
timestamp correction).

 If demuxer low level seeks (i.e. seeking the actual demuxer instead of just within the demuxer
cache) are performed by backward playback, the created seek ranges may not join, because not
enough overlap is achieved.

» Trying to use this with hardware video decoding will probably exhaust all your GPU memory and
then crash a thing or two. Or it will fail because - - hwdec- ext r a- f r anes will certainly be set too
low.



» Stream recording is broken. - - st r eam r ecor d may keep working if you backward play within a
cached region only.

* Relative seeks may behave weird. Small seeks backward (towards smaller time, i.e. seek -1)
may not really seek properly, and audio will remain muted for a while. Using hr-seek is
recommended, which should have none of these problems.

* Some things are just weird. For example, while seek commands manipulate playback time in the
expected way (provided they work correctly), the framestep commands are transposed.
Backstepping will perform very expensive work to step forward by 1 frame.

Tuning:

* Remove all --vf/--af filters you have set. Disable hardware decoding. Disable functions like
SPDIF passthrough.

* Increasing - - vi deo-r ever sal - buf f er might help if reversal queue overflow is reported, which
may happen in high bitrate video, or video with large GOP. Hardware decoding mostly ignores this,
and you need to increase - - hwdec- ext r a- f r ames instead (until you get playback without logged
errors).

e The demuxer cache is essential for backward demuxing. Make sure to set - - cache=yes. The
cache size might matter. If it's too small, a queue overflow will be logged, and backward playback
cannot continue, or it performs too many low level seeks. If it's too large, implementation tradeoffs
may cause general performance issues. Use - - denuxer - max- byt es to potentially increase the
amount of packets the demuxer layer can queue for reverse demuxing (basically it's the
--vi deo-reversal - buf f er equivalent for the demuxer layer).

» Setting - - vd- queue- enabl e=yes can help a lot to make playback smooth (once it works).

e --denuxer - backwar d- pl ayback- st ep also factors into how many seeks may be performed,
and whether backward demuxing could break due to queue overflow. If it's set too high, the
backstep operation needs to search through more packets all the time, even if the cache is large
enough.

» Setting - - demuxer - cache-wai t may be useful to cache the entire file into the demuxer cache.
Set --denuxer-max-bytes to a large size to make sure it can read the entire cache;
- - denuxer - max- back- byt es should also be set to a large size to prevent that tries to trim the
cache.

o If audio artifacts are audible, even though the AO does not underrun, increasing
- - audi o- backwar d- over | ap might help in some cases.
--vi deo-reversal - buf f er =<byt esi ze>, - - audi o-rever sal - buf f er =<byt esi ze>

For backward decoding. Backward decoding decodes forward in steps, and then reverses the decoder
output. These options control the approximate maximum amount of bytes that can be buffered. The main
use of this is to avoid unbounded resource usage; during normal backward playback, it's not supposed
to hit the limit, and if it does, it will drop frames and complain about it.

Use this option if you get reversal queue overflow errors during backward playback. Increase the size
until the warning disappears. Usually, the video buffer will overflow first, especially if it's high resolution
video.

This does not work correctly if video hardware decoding is used. The video frame size will not include
the referenced GPU and driver memory. Some hardware decoders may also be limited by
--hwdec- extra-franes.

How large the queue size needs to be depends entirely on the way the media was encoded. Audio
typically requires a very small buffer, while video can require excessively large buffers.

(Technically, this allows the last frame to exceed the limit. Also, this does not account for other buffered
frames, such as inside the decoder or the video output.)

This does not affect demuxer cache behavior at all.



See - -1ist-options for defaults and value range. <byt esi ze> options accept suffixes such as Ki B
and M B.

- -vi deo- backwar d- over | ap=<aut o| nunber >, - - audi o- backwar d- over | ap=<aut o| nhunber >

Number of overlapping keyframe ranges to use for backward decoding (default: auto) ("keyframe" to be
understood as in the mpv/ffmpeg specific meaning). Backward decoding works by forward decoding in
small steps. Some codecs cannot restart decoding from any packet (even if it's marked as seek point),
which becomes noticeable with backward decoding (in theory this is a problem with seeking too, but
- - hr - seek- denuxer - of f set can fix it for seeking). In particular, MDCT based audio codecs are
affected.

The solution is to feed a previous packet to the decoder each time, and then discard the output. This
option controls how many packets to feed. The aut o choice is currently hardcoded to 0O for video, and
uses 1 for lossy audio, O for lossless audio. For some specific lossy audio codecs, this is set to 2.

--vi deo- backwar d- over | ap can potentially handle intra-refresh video, depending on the exact
conditions. You may have to use the - - vd- | avc- show al | option as well.

- -vi deo- backwar d- bat ch=<nunber >, - - audi o- backwar d- bat ch=<nunber >

Number of keyframe ranges to decode at once when backward decoding (default: 1 for video, 10 for
audio). Another pointless tuning parameter nobody should use. This should affect performance only. In
theory, setting a number higher than 1 for audio will reduce overhead due to less frequent backstep
operations and less redundant decoding work due to fewer decoded overlap frames (see
- - audi o- backwar d- over | ap). On the other hand, it requires a larger reversal buffer, and could make
playback less smooth due to breaking pipelining (e.g. by decoding a lot, and then doing nothing for a
while).

It probably never makes sense to set - - vi deo- backwar d- bat ch. But in theory, it could help with
intra-only video codecs by reducing backstep operations.

- -denuxer - backwar d- pl ayback- st ep=<seconds>

Number of seconds the demuxer should seek back to get new packets during backward playback
(default: 60). This is useful for tuning backward playback, see - - pl ay- di r ect i on for details.

Setting this to a very low value or 0 may make the player think seeking is broken, or may make it perform
multiple seeks.

Setting this to a high value may lead to quadratic runtime behavior.

Program Behavior
--hel p,--h

Show short summary of options.

You can also pass a string to this option, which will list all top-level options which contain the string in the
name, e.g. - - h=scal e for all options that contain the word scal e. The special string * lists all top-level
options.

Increment verbosity level, one level for each - v found on the command line.

--version, -V

Print version string and exit.

--no-config

Do not load default configuration or any user files. This prevents loading of both the user-level and
system-wide npv. conf and i nput. conf files. Other user files are blocked as well, such as resume
playback files and cache files. This option only takes effect when used as a command line flag.



Note

Files explicitly requested by command line options, like - -i ncl ude or --use-fil edir-conf,
will still be loaded.

See also: - - config-dir.
--list-options

Prints all available options.
--list-properties

Print a list of the available properties.
--list-protocols

Print a list of the supported protocols.
--1og-fil e=<pat h>

Opens the given path for writing, and print log messages to it. Existing files will be truncated. The log
level is at least - v - v, but can be raised via - - msg- | evel (the option cannot lower it below the forced
minimum log level).

A special case is the macOS bundle, it will create a log file at ~/ Li br ary/ Logs/ npv. | og by default.
--confi g-di r=<pat h>

Force a different configuration directory. If this is set, the given directory is used to load configuration
files, and all other configuration directories are ignored. This means the global mpv configuration
directory as well as per-user directories are ignored, and overrides through environment variables
(MPV_HQME) are also ignored.

Note that the cache and state paths (~~/ cache, ~~/ st at e) are not considered "configuration" and
keep their auto-detection logic.

Note that the - - no- conf i g option takes precedence over this option.
--dunp- st at s=<fil enane>

Write certain statistics to the given file. The file is truncated on opening. The file will contain raw
samples, each with a timestamp. To make this file into a readable, the script TOOLS/ st at s- conv. py
can be used (which currently displays it as a graph).

This option is useful for debugging only.
--idl e=<no| yes| once>

Makes mpv wait idly instead of quitting when there is no file to play. Mostly useful in input mode, where
mpv can be controlled through input commands. (Default: no)

once will only idle at start and let the player close once the first playlist has finished playing back.
--include=<configuration-file>

Specify configuration file to be parsed after the default ones.
--1 oad- scri pt s=<yes| no>

If set to no, don't auto-load scripts from the scripts configuration subdirectory (usually
~/ . confi g/ mpv/scripts/). (Default: yes)

--script=<filenanme>,--scripts=filel.lua:file2.lua:...

Load a Lua script. The second option allows you to load multiple scripts by separating them with the path
separator (: on Unix, ; on Windows).

--scripts is a path list option. See List Options for details.
--script-opt =<key=val ue>, - -scri pt - opt s=keyl=val uel, key2=val ue2, . ..



Set options for scripts. A script can query an option by key. If an option is used and what semantics the
option value has depends entirely on the loaded scripts. Values not claimed by any scripts are ignored.

Each use of the --script-opt option will add another option to the internal list, while
--script-opts takes a list of options at once, and overwrites the internal list with it. The latter is a
key/value list option. See List Options for details.

--nerge-files

Pretend that all files passed to mpv are concatenated into a single, big file. This uses timeline/EDL
support internally.

--profile=<profilel,profile2,...>
Use the given profile(s), - - pr of i | e=hel p displays a list of the defined profiles.
--reset-on-next-file=<all|optionl, option2,...>

Normally, mpv will try to keep all settings when playing the next file on the playlist, even if they were
changed by the user during playback. (This behavior is the opposite of MPlayer's, which tries to reset all
settings when starting next file.)

Default: Do not reset anything.

This can be changed with this option. It accepts a list of options, and mpv will reset the value of these
options on playback start to the initial value. The initial value is either the default value, or as set by the
config file or command line.

The special name al | resets as many options as possible.

This is a string list option. See List Options for details.

Examples

e --reset-on-next-fil e=pause Reset pause mode when switching to the next file.

e --reset-on-next-file=fullscreen, speed Reset fullscreen and playback speed
settings if they were changed during playback.

e --reset-on-next-file=all Try to reset all settings that were changed during
playback.

--showprofil e=<profile>
Show the description and content of a profile. Lists all profiles if no parameter is provided.
--use-filedir-conf

Look for a file-specific configuration file in the same directory as the file that is being played. See
File-specific Configuration Files.

Warning

May be dangerous if playing from untrusted media.

--ytdl =<yes| no>
Enable the youtube-dl hook-script. It will look at the input URL, and will play the video located on the
website. This works with many streaming sites, not just the one that the script is named after. This
requires a recent version of youtube-dl to be installed on the system (default: yes).

If the script can't do anything with an URL, it will do nothing.



This accepts a set of options, which can be passed to it with the --scri pt-opts option (using
ytdl _hook- as prefix):

try_ytdl _first=<yes|no>

If 'yes' will try parsing the URL with youtube-dl first, instead of the default where it's only after mpv
failed to open it. This mostly depends on whether most of your URLs need youtube-dl parsing.

excl ude=<URL1| URL2]| . ..

A | -separated list of URL patterns which mpv should not use with youtube-dl. The patterns are
matched after the htt p(s):// part of the URL.

A matches the beginning of the URL, $ matches its end, and you should use %before any of the
characters *$() %, . [ ] * +- ? to match that character.

URLs are converted to lower case before matching.

Examples

e --script-opts=ytdl hook-excl ude='*yout ube% com will exclude any URL
that starts with htt p: / / yout ube. comor htt ps: // yout ube. com

e --script-opts=ytdl _hook-excl ude=" % nkv$| % np4$' will exclude any URL
that ends with . nkv or . np4.

See more lua patterns here: https://www.lua.org/manual/5.1/manual.html#5.4.1

i ncl ude=<URL1| URL2]| ...

al |

A | -separated list of URL patterns which mpv should try to parse with youtube-dl first when
try_ytdl _first isno. The patterns are matched in the same way as excl ude.

Default: ~%w+% yout ube% coni | “yout ube% coni | *yout u% be/ | *"%w+% tw t ch% t v/ | Mt
witch%tv/

_format s=<yes| no>

If 'yes' will attempt to add all formats found reported by youtube-dl (default: no). Each format is
added as a separate track. In addition, they are delay-loaded, and actually opened only when a
track is selected (this should keep load times as low as without this option).

It adds average bitrate metadata, if available, which means you can use - - hl s- bi t r at e to decide
which track to select. (HLS used to be the only format whose alternative quality streams were
exposed in a similar way, thus the option name.)

Tracks which represent formats that were selected by youtube-dl as default will have the default flag
set. This means mpv should generally still select formats chosen with - - yt dl - f or mat by default.

Although this mechanism makes it possible to switch streams at runtime, it's not suitable for this
purpose for various technical reasons. (It's slow, which can't be really fixed.) In general, this option
is not useful, and was only added to show that it's possible.

There are two cases that must be considered when doing quality/bandwidth selection:

1. Completely separate audio and video streams (DASH-like). Each of these streams contain
either only audio or video, so you can mix and combine audio/video bandwidths without
restriction. This intuitively matches best with the concept of selecting quality by track (what
al | _formats is supposed to do).

2. Separate sets of muxed audio and video streams. Each version of the media contains
both an audio and video stream, and they are interleaved. In order not to waste
bandwidth, you should only select one of these versions (if, for example, you select


https://www.lua.org/manual/5.1/manual.html#5.4.1

an audio stream, then video will be downloaded, even if you selected video from a
different stream).

mpv will still represent them as separate tracks, but will set the title of each track to
nmuxed- N, where Nis replaced with the youtube-dl format ID of the originating stream.

Some sites will mix 1. and 2., but we assume that they do so for compatibility reasons, and there is
no reason to use them at all.

force_all _fornmats=<yes| no>
If set to 'yes', and al | _f or mat s is also set to 'yes', this will try to represent all youtube-dl reported
formats as tracks, even if mpv would normally use the direct URL reported by it (default: yes).
It appears this normally makes a difference if youtube-dl works on a master HLS playlist.
If this is set to 'no’, this specific kind of stream is treated like al | _f or mat s is set to 'no’, and the
stream selection as done by youtube-dl (via - - yt dl - f or mat ) is used.

t hunbnai | s=<al | | best | none>
Add thumbnails as video tracks (default: none).
Thumbnails get downloaded when they are added as tracks, so 'all' can have a noticeable impact on
how long it takes to open the video when there are a lot of thumbnails.

use_nani f est s=<yes| no>

Make mpv use the master manifest URL for formats like HLS and DASH, if available, allowing for
video/audio selection in runtime (default: no). It's disabled ("no") by default for performance reasons.

yt dl _pat h=yout ube- dl

Configure paths to youtube-dl's executable or a compatible fork's. The paths should be separated
by : on Unix and ; on Windows. mpv looks in order for the configured paths in PATH and in mpv's

config directory. The defaults are "yt-dIp", "yt-dlp_x86" and "youtube-dl". On Windows the suffix
extension is not necessary, but only ".exe" is acceptable.

Why do the option namesmix _ and - ?

| have no idea.

--ytdl -format=<ytdl | best|worst|np4|webni...>

Video format/quality that is directly passed to youtube-dl. The possible values are specific to the website
and the video, for a given url the available formats can be found with the command
yout ube-dl --list-formats URL. See youtube-dl's documentation for available aliases. (Default:
best vi deo+best audi o/ best)

The yt dl value does not pass a - - f or nat option to youtube-dl at all, and thus does not override its
default. Note that sometimes youtube-dl returns a format that mpv cannot use, and in these cases the
mpv default may work better.

--ytdl -raw opti ons=<key>=<val ue>[, <key>=<val ue>[,...]]
Pass arbitrary options to youtube-dl. Parameter and argument should be passed as a key-value pair.
Options without argument must include =.

There is no sanity checking so it's possible to break things (i.e. passing invalid parameters to
youtube-dl).

A proxy URL can be passed for youtube-dl to use it in parsing the website. This is useful for
geo-restricted URLs. After youtube-dl parsing, some URLSs also require a proxy for playback, so this can
pass that proxy information to mpv. Take note that SOCKS proxies aren't supported and https URLSs also
bypass the proxy. This is a limitation in FFmpeg.

This is a key/value list option. See List Options for detalils.



Example

e --ytdl-raw opti ons=user name=user, passwor d=pass

o --ytdl -raw options=force-ipv6=

o --ytdl -rawoptions=proxy=[http://127.0.0. 1: 3128]

o --ytdl-raw options-append=proxy=http://127.0.0.1: 3128

--ytdl -extract-chapt er s=<yes| no>
Enable chapter extracting from youtube-dl video description (default: yes).
--j s-menory-report =<yes| no>
Enable memory reporting for javascript scripts in the stats overlay. This is disabled by default because it

has an overhead and increases memory usage. This option will only work if it is enabled before mpv is
started.

--1 oad- st at s-over | ay=<yes| no>

Enable the builtin script that shows useful playback information on a key binding (default: yes). By
default, the i key is used (I to make the overlay permanent).

- -1 oad- consol e=<yes| no>
Enable the built-in script to handle textual input (default: yes).
- - | oad- commands=<yes| no>

Enable the built-in script to enter commands in the console (default: yes). The ~ key is used to activate
this by default.

- -1 oad- aut o- profi | es=<yes| no| aut o>

Enable the builtin script that does auto profiles (default: auto). See Conditional auto profiles for details.
aut o will load the script, but immediately unload it if there are no conditional profiles.

- -1 oad- sel ect =<yes| no>

Enable the builtin script that lets you select from lists of items (default: yes). By default, its keybindings
start with the g key.

- -1 oad- posi ti oni ng=<yes| no>
Enable the builtin script that provides various keybindings to pan videos and images (default; yes).
--pl ayer - oper ati on- node=<cpl ayer | pseudo- gui >
For enabling "pseudo GUI mode", which means that the defaults for some options are changed. This

option should not normally be used directly, but only by mpv internally, or mpv-provided scripts, config
files, or .desktop files. See PSEUDO GUI MODE for details.

Watch Later

--save-position-on-quit
Always save the current playback position on quit, and also when the | oadf i | e command is used to
replace the current playlist. When this file is played again later, the player will seek to the old playback
position on start. This does not happen if playback of a file is stopped in other ways. For example, going
to the next file in the playlist will not save the position, and will start playback at beginning the next time
the file is played.

This behavior is disabled by default, but is always available when quitting the player with Shift+Q.
See RESUMING PLAYBACK.

--wat ch-1 at er - di r =<pat h>
The directory in which to store the "watch later" temporary files.



--watch-later-directoryisanaliasfor--watch-later-dir.
If this option is unset, the files will be stored in a subdirectory named "watch_later" underneath the local
state directory (usually ~/ . | ocal / st at e/ npv/).

--resune- pl ayback=<yes| no>

Restore playback position from the watch_|later configuration subdirectory, usually
~/ . confi g/ mpv/wat ch_I at er/ (default; yes).

--resune- pl ayback- check- nti ne=<yes| no>

Only restore the playback position from the watch_| ater configuration subdirectory (usually
~/ . confi g/ mpv/wat ch_| at er/) if the file's modification time is the same as at the time of saving.
This may prevent skipping forward in files with the same name which have different content. (Default:
no)

--wat ch-1 ater-options=optionl, option2,...

The options that are saved in "watch later" files if they have been changed since when mpv started.
These values will be restored the next time the files are played. Note that the playback position is saved
via the st art option.

When removing options, existing watch later data won't be modified and will still be applied fully, but new
watch later data won't contain these options.

See - - hel p=wat ch- | at er - opt i ons for the list of the properties that are restored by default.

This is a string list option. See List Options for details.

Examples

e« --wat ch-| at er-opti ons-renobve=si d The subtitle track selection will not be restored.

e --watch-I| ater-options-renove=vol une
--wat ch-1 at er - opti ons-renpve=nut e The volume and mute state won't be saved to
watch later files.

« --watch-| ater-opti ons=start No option will be saved to watch later files, except the
playback position.

--write-filenane-in-watch-later-config

Prepend the watch later config files with the name of the file they refer to. This is simply written as
comment on the top of the file.

Warning

This option may expose privacy-sensitive information and is thus disabled by default.

--ignore-path-in-watch-1later-config
Ignore path (i.e. use filename only) when using watch later feature. (Default: disabled)

Watch History

--save-wat ch-history
Whether to save which files are played. These can be then selected with the default g- h key binding.



Warning

This option may expose privacy-sensitive information and is thus disabled by default.

- -wat ch- hi st ory- pat h=<pat h>
The path in which to store the watch history. Default: ~~st at e/ wat ch_hi st ory. j sonl (see PATHS).

This file contains one JSON object per line. Its ti ne field is the UNIX timestamp when the file was
opened, its pat h field is the normalized path, and its ti t | e field is the title when it was available.

Video

--vo=<driver>
Specify the video output backend to be used. See VIDEO OUTPUT DRIVERS for details and
descriptions of available drivers.

--vd=<...>

Specify a priority list of video decoders to be used, according to their family and name. See - - ad for
further details. Both of these options use the same syntax and semantics; the only difference is that they
operate on different codec lists.

Note

See - - vd=hel p for a full list of available decoders.

--vf=<filterl[=paraneterl: paraneter2:...],filter2,...>
Specify a list of video filters to apply to the video stream. See VIDEO FILTERS for details and
descriptions of the available filters. The option variants - - vf - add, - - vf - pre, and - - vf - cl r exist to
modify a previously specified list, but you should not need these for typical use.
--untinmed
Do not sleep when outputting video frames. Useful for benchmarks when used with - - audi o=no.
- - framedr op=<node>
Skip displaying some frames to maintain A/V sync on slow systems, or playing high framerate video on
video outputs that have an upper framerate limit.
The argument selects the drop methods, and can be one of the following:
<no>
Disable any frame dropping. Not recommended, for testing only.
<Vv0>
Drop late frames on video output (default). This still decodes and filters all frames, but doesn't
render them on the VO. Drops are indicated in the terminal status line as Dr opped: field.

In audio sync. mode, this drops frames that are outdated at the time of display. If the decoder is too
slow, in theory all frames would have to be dropped (because all frames are too late) - to avoid this,
frame dropping stops if the effective framerate is below 10 FPS.

In display-sync. modes (see - - vi deo- sync), this affects only how A/V drops or repeats frames. If
this mode is disabled, A/V desync will in theory not affect video scheduling anymore (much like the
di spl ay-resanpl e- desync mode). However, even if disabled, frames will still be skipped (i.e.
dropped) according to the ratio between video and display frequencies.

This is the recommended mode, and the default.



<decoder>

Old, decoder-based framedrop mode. (This is the same as - - f r amedr op=yes in mpv 0.5.x and
before.) This tells the decoder to skip frames (unless they are needed to decode future frames).
May help with slow systems, but can produce unwatchable choppy output, or even freeze the
display completely.

This uses a heuristic which may not make sense, and in general cannot achieve good results,
because the decoder's frame dropping cannot be controlled in a predictable manner. Not
recommended.

Even if you want to use this, prefer decoder +vo for better results.

The - - vd- | avc- f r anedr op option controls what frames to drop.
<decoder+vo>
Enable both modes. Not recommended. Better than just decoder mode.

Note

- -vo=vdpau has its own code for the vo framedrop mode. Slight differences to other VOs are
possible.

--vi deo- | at ency- hacks=<yes| no>

Enable some things which tend to reduce video latency by 1 or 2 frames (default: no). Note that this
option might be removed without notice once the player's timing code does not inherently need to do
these things anymore. Using this option is known to break other options such as interpolation, so it is not
recommended to enable this.

This does:

» Use the demuxer reported FPS for frame dropping. This avoids the player needing to decode 1
frame in advance, lowering total latency in effect. This also means that if the demuxer reported FPS
is wrong, or the video filter chain changes FPS (e.g. deinterlacing), then it could drop too many or
not enough frames.

« Disable waiting for the first video frame. Normally the player waits for the first video frame to be fully
rendered before starting playback properly. Some VOs will lazily initialize stuff when rendering the
first frame, so if this is not done, there is some likeliness that the VO has to drop some frames if
rendering the first frame takes longer than needed.

--di spl ay-f ps-overri de=<f ps>
Set the display FPS used with the - - vi deo- sync=di spl ay-* modes. By default, a detected value is
used. Keep in mind that setting an incorrect value (even if slightly incorrect) can ruin video playback. On
multi-monitor systems, there is a chance that the detected value is from the wrong monitor.

Set this option only if you have reason to believe the automatically determined value is wrong.
--hwdec=<api 1, api 2, . .. | no| aut o] aut o- copy>
Specify the hardware video decoding API that should be used if possible. Whether hardware decoding is

actually done depends on the video codec. If hardware decoding is not possible, mpv will fall back on
software decoding.

Hardware decoding is not enabled by default, to keep the out-of-the-box configuration as reliable as
possible. However, when using modern hardware, hardware video decoding should work correctly,
offering reduced CPU usage, and possibly lower power consumption. On older systems, it may be
necessary to use hardware decoding due to insufficient CPU resources; and even on modern systems,
sufficiently complex content (eg: 4K60 AV1) may require it.

This is a string list option. See List Options for details.



Note

Use the Ct r | +h shortcut to toggle hardware decoding at runtime. It toggles this option between
aut o and no.

If you decide you want to use hardware decoding by default, the general recommendation is to try
out decoding with the command line option, and prove to yourself that it works as desired for the
content you care about. After that, you can add it to your config file.

When testing, you should start by using hwdec=aut o as it will limit itself to choosing from
hwdecs that are actively supported by the development team. If that doesn't result in working
hardware decoding, you can try hwdec=aut o- unsaf e to have it attempt to load every possible
hwdec, but if aut o didn't work, you will probably need to know exactly which hwdec matches
your hardware and read up on that entry below.

If aut o produced the desired results, we recommend just sticking with that and only setting a
specific hwdec in your config file if it is really necessary.

If you use the Ubuntu package, keep in mind that their /et c/ mpv/ npv. conf contains
hwdec=vaapi , which is less than ideal as it may not be the right choice for your system, and it
may end up using an inefficient wrapper library under the covers. We recommend removing this
line or deleting the file altogether.

Note

Even if enabled, hardware decoding is still only white-listed for some codecs. See
- - hwdec- codecs to enable hardware decoding in more cases.

Which method to choose?

« If you only want to enable hardware decoding at runtime, don't set the parameter, or put
hwdec=no into your npv. conf (relevant on distros which force-enable it by default, such
as on Ubuntu). Use the Ct r | +h default binding to enable it at runtime.

« If you're not sure, but want hardware decoding always enabled by default, put hwdec=yes
into your npv. conf , and acknowledge that this may cause problems.

«If you want to test available hardware decoding methods, pass
--hwdec=aut o --hwdec-codecs=al | and look at the terminal output.

 If you're a developer, or want to perform elaborate tests, you may need any of the other
possible option values.

This option accepts a comma delimited list of api types, along with certain special values:

no: always use software decoding (default)
auto: enable any whitelisted hw decoder (see below)
auto-unsafe: forcibly enable any hw decoder found (see below)
yes: exactly the same as aut o
auto-safe: exactly the same as aut o



Note

Special values can be mixed with api names. eg: vaapi , aut o will try and use the vaapi hwdec,
and if that fails, will run through the normal aut o logic.

Actively supported hwdecs:

d3dllva:

d3dllva-copy:
videotoolbox:
videotoolbox-c
opy:

vaapi:
vaapi-copy:
nvdec:
nvdec-copy:
drm:
drm-copy:
vulkan:
vulkan-copy:

requires --vo=gpu with --gpu-cont ext =d3d11 or - - gpu-cont ext =angl e
(Windows 8+ only)

copies video back to system RAM (Windows 8+ only)
requires - - vo=gpu (macOS 10.8 and up), or - - vo=I i bnpv (i0S 9.0 and up)
copies video back into system RAM (macOS 10.8 or iOS 9.0 and up)

requires - - vo=gpu, - - vo=vaapi or - - vo=dmabuf - wayl and (Linux only)
copies video back into system RAM (Linux with some GPUs or Windows)
requires - - vo=gpu (Any platform CUDA is available)

copies video back to system RAM (Any platform CUDA is available)

requires - - vo=gpu (Linux only)

copies video back to system RAM (Linux only)

requires - - vo=gpu- next (Any platform with Vulkan Video Decoding)

copies video back to system RAM (Any platform with Vulkan Video Decoding)

Other hwdecs (only use if you know you have to):

dxvaZ2:

dxva2-copy:

vdpau:
vdpau-copy:
mediacodec:

mediacodec-co
py:

cuda:
cuda-copy:
crystalhd:
rkmpp:

requires - - vo=gpu with - - gpu- cont ext =d3d11, - - gpu- cont ext =angl e or
- - gpu- cont ext =dxi nt er op (Windows only)

copies video back to system RAM (Windows only)
requires - - vo=gpu with - - gpu- cont ext =x11, or - - vo=vdpau (Linux only)
copies video back into system RAM (Linux with some GPUs only)

requires - - vo=gpu - - gpu- cont ext =andr oi d or - - vo=nedi acodec_enbed
(Android only)

copies video back to system RAM (Android only)

requires - - vo=gpu (Any platform CUDA is available)

copies video back to system RAM (Any platform CUDA is available)
copies video back to system RAM (Any platform supported by hardware)
requires - - vo=gpu (some RockChip devices only)

aut o tries to automatically enable hardware decoding using the first available method, but allows only
whitelisted methods that are considered "safe". This is supposed to be a reasonable way to enable
hardware decoding by default in a config file (even though you shouldn't do that anyway; prefer runtime
enabling with Ct r | +h). Unlike aut o- unsaf e, this will not try to enable unknown or known-to-be-bad
methods. In addition, this may disable hardware decoding in other situations when it's known to cause
problems, but currently this mechanism is quite primitive. (As an example for something that still causes
problems: certain combinations of HEVC and Intel chips on Windows tend to cause mpv to crash, most
likely due to driver bugs.)

aut o- unsaf e is similar to aut o, but without the whitelist. In general, you should never need to use this
beyond debugging or development use. Any known unsafe hwdec you want to test can simply be
appended to the list option such as - - hwdec=aut o, unsaf e- hwdec. This still depends what VO you
are using. See the list above, for which - - vo and gpu- cont ext is required for a given hwdec. It will



go down the list of available hwdecs until one is successfully initialised. If all of them fall, it will fallback to
software decoding.

aut o- copy selects only modes that copy the video data back to system memory after decoding. This
selects modes like vaapi - copy (and so on), but it only allows whitelisted methods that are considered
"safe". If none of these work, hardware decoding is disabled. This mode is usually guaranteed to incur
no additional quality loss compared to software decoding (assuming modern codecs and an error free
video stream), and will allow CPU processing with video filters. This mode works with all video filters and
VOs.

aut o- copy- saf e is an alias for aut o- copy

aut o- copy- unsaf e is the same as aut 0- copy except that it goes through all methods and not just
the whitelisted ones that are considered "safe".

Because these copy the decoded video back to system RAM, they're often less efficient than the direct
modes, and may not help too much over software decoding if you are short on CPU resources.

Note

Most non-copy methods only work with the OpenGL GPU backend. Currently, only the vaapi ,
nvdec, cuda and vul kan methods work with Vulkan.

The vaapi mode, if used with - - vo=gpu or - - vo=gpu- next most likely works with Intel and AMD
GPUs only. It requires the opengl EGL backend if the GPU does not support drm modifiers.

nvdec and nvdec- copy are the newest, and recommended method to do hardware decoding on Nvidia
GPUs.

cuda and cuda- copy are an older implementation of hardware decoding on Nvidia GPUs that uses
Nvidia's bitstream parsers rather than FFmpeg's. This can lead to feature deficiencies, such as incorrect
playback of HDR content, and nvdec/nvdec- copy should always be preferred unless you specifically
need Nvidia's deinterlacing algorithms. To use this deinterlacing you must pass the option:
vd- | avc- o=dei nt =[ weave| bob| adapti ve] . Pass weave (or leave the option unset) to not attempt
any deinterlacing.

Quality reduction with hardware decoding

In theory, hardware decoding does not reduce video quality (at least for the codecs h264 and
HEVC). However, due to restrictions in video output APIs, as well as bugs in the actual
hardware decoders, there can be some loss, or even blatantly incorrect results. This has largely
ceased to be a problem with modern hardware, but there is a lot of hardware out there, so
caveat emptor. Known problems are discussed below, but the list cannot be considered
exhaustive, as even hwdecs that work well on certain hardware generations may be problematic
on other ones.

In some cases, RGB conversion is forced, which means the RGB conversion is performed by
the hardware decoding API, instead of the shaders used by - - vo=gpu. This means certain
colorspaces may not display correctly, and certain filtering (such as debanding) cannot be
applied in an ideal way. This will also usually force the use of low quality chroma scalers instead
of the one specified by - - cscal e. In other cases, hardware decoding can also reduce the bit
depth of the decoded image, which can introduce banding or precision loss for 10-bit files.

vdpau always does RGB conversion in hardware, which does not support newer colorspaces
like BT.2020 correctly. However, vdpau doesn't support 10 bit or HDR encodings, so these
limitations are unlikely to be relevant.



dxva2 is not safe. It appears to always use BT.601 for forced RGB conversion, but actual
behavior depends on the GPU drivers. Some drivers appear to convert to limited range RGB,
which gives a faded appearance. In addition to driver-specific behavior, global system settings
might affect this additionally. This can give incorrect results even with completely ordinary video
sources.

medi acodec is not safe. It forces RGB conversion (not with - copy) and how well it handles
non-standard colorspaces is not known. In the rare cases where 10-bit is supported the bit depth
of the output will be reduced to 8.

cuda should usually be safe, but depending on how a file/stream has been mixed, it has been
reported to corrupt the timestamps causing glitched, flashing frames. It can also sometimes
cause massive framedrops for unknown reasons. Caution is advised, and nvdec should always
be preferred.

cryst al hd is not safe. It always converts to 4:2:2 YUV, which may be lossy, depending on how
chroma sub-sampling is done during conversion. It also discards the top left pixel of each frame
for some reason.

If you run into any weird decoding issues, frame glitches or discoloration, and you have - - hwdec
turned on, the first thing you should try is disabling it.

--gpu- hwdec- i nt er op=<aut o] al | | no| nane>
This option is for troubleshooting hwdec interop issues. Since it's a debugging option, its semantics may
change at any time.

This is useful for the gpu and | i bnpv VOs for selecting which hwdec interop context to use exactly.
Effectively it also can be used to block loading of certain backends.

If set to aut o (default), the behavior depends on the VO: for gpu, it does nothing, and the interop
context is loaded on demand (when the decoder probes for - - hwdec support). For | i brpv, which has
has no on-demand loading, this is equivalent to al I .

The empty string is equivalent to aut o.
If setto al |, it attempts to load all interop contexts at GL context creation time.

Other than that, a specific backend can be set, and the list of them can be queried with hel p (mpv CLI
only).

Runtime changes to this are ignored (the current option value is used whenever the renderer is created).

--hwdec- extra-franes=<N>

Number of GPU frames hardware decoding should preallocate (default: see - -1 i st - opti ons output).
If this is too low, frame allocation may fail during decoding, and video frames might get dropped and/or
corrupted. Setting it too high simply wastes GPU memory and has no advantages.

This value is used only for hardware decoding APIs which require preallocating surfaces (known
examples include d3d11va and vaapi ). For other APIs, frames are allocated as needed. The details
depend on the libavcodec implementations of the hardware decoders.

The required number of surfaces depends on dynamic runtime situations. The default is a fixed value
that is thought to be sufficient for most uses. But in certain situations, it may not be enough.

--hwdec-i mage- f or mat =<nane>

Set the internal pixel format used by hardware decoding via - - hwdec (default no). The special value no
selects an implementation specific standard format. Most decoder implementations support only one
format, and will fail to initialize if the format is not supported.

Some implementations might support multiple formats. In particular, videotoolbox is known to require
uyvy422 for good performance on some older hardware. d3d1lva can always use yuv420p, which
uses an opaque format, with likely no advantages.



- -cuda- decode- devi ce=<aut 0| 0. . >
Choose the GPU device used for decoding when using the cuda or nvdec hwdecs with the OpenGL
GPU backend, and with the cuda- copy or nvdec- copy hwdecs in all cases.

For the OpenGL GPU backend, the default device used for decoding is the one being used to provide
gpu output (and in the vast majority of cases, only one GPU will be present).

For the copy hwdecs, the default device will be the first device enumerated by the CUDA libraries -
however that is done.

For the Vulkan GPU backend, decoding must always happen on the display device, and this option has
no effect.

--vaapi - devi ce=<devi ce fil e| adapter nane>
Choose the DRM device for vaapi - copy. This should be the path to a DRM device file. (Default:
/dev/ dri/render D128)
On Windows this takes adapter name as an input. Will pick the default adapter if unset. Alternatives are
listed when the name "help" is given.

- - panscan=<0. 0- 1. 0>

Enables pan-and-scan functionality (cropping the sides of e.g. a 16:9 video to make it fit a 4:3 display
without black bands). The range controls how much of the image is cropped. May not work with all video
output drivers.

This option has no effect if - - vi deo- unscal ed option is used.

The difference between - - panscan and - - vi deo- zoomis that - - panscan can only zoom in until
either the video width or height fills the window, while - - vi deo- zoom can zoom in or out arbitrary
amounts, and also works with - - vi deo- unscal ed.

--vi deo- aspect-overri de=<rati o] no>
Override video aspect ratio, in case aspect information is incorrect or missing in the file being played.
These values have special meaning:

no: use the method of the - - vi deo- aspect - net hod option (default)
0: disable aspect ratio handling, pretend the video has square pixels (deprecated,

use --video-aspect-override=no --video-aspect-nmethod=i gnhore
instead)

-1:  strictly prefer the container aspect ratio (deprecated, use
--vi deo- aspect - overri de=no - -vi deo- aspect - net hod=cont ai ner
instead)

But note that handling of these special values might change in the future.

Examples

* --vi deo- aspect-override=4: 3 or--video- aspect-override=1. 3333
» --vi deo- aspect-override=16: 9 or--vi deo- aspect - overri de=1. 7777

* --no-Vi deo- aspect - overri de or--vi deo- aspect - overri de=no

- -vi deo- aspect - met hod=<bi t st r ean] cont ai ner | i gnor e>

This sets the default video aspect determination method (if the aspect is _not_ overridden by the user
with - - vi deo- aspect - overri de or others).

container: Strictly prefer the container aspect ratio. This is apparently the default behavior
with VLC, at least with Matroska. Note that if the container has no aspect ratio set,
the behavior is the same as with bitstream.



bitstream: Strictly prefer the bitstream aspect ratio, unless the bitstream aspect ratio is not
set. This is apparently the default behavior with XBMC/kodi, at least with
Matroska.

ignore: Disable aspect ratio handling, pretend the video has square pixels.

The current default for mpv is cont ai ner.

Normally you should not set this. Try the various choices if you encounter video that has the wrong
aspect ratio in mpv, but seems to be correct in other players.

- -vi deo- unscal ed=<no| yes| downscal e- bi g>

Disable scaling of the video. If the window is larger than the video, black bars are added. Otherwise, the
video is cropped, unless the option is set to downscal e- bi g, in which case the video is fit to window.
The video still can be influenced by the other - - vi deo-. .. options. This option disables the effect of
- - panscan.

Note that the scaler algorithm may still be used, even if the video isn't scaled. For example, this can
influence chroma conversion. The video will also still be scaled in one dimension if the source uses
non-square pixels (e.g. anamorphic widescreen DVDs).

This option is disabled if - - keepaspect =no is used.
- -vi deo- pan- x=<val ue>, - - vi deo- pan- y=<val ue>
Moves the displayed video rectangle by the given value in the X or Y direction. The unit is in fractions of

the size of the scaled video (the full size, even if parts of the video are not visible due to panscan or other
options).

For example, displaying a video fullscreen on a 1920x1080 screen with - - vi deo- pan- x=- 0. 1 would
move the video 192 pixels to the left and - - vi deo- pan- y=- 0. 1 would move the video 108 pixels up.
This option is disabled if - - keepaspect =no is used.

--vi deo- r ot at e=<0- 359| no>

Rotate the video clockwise, in degrees. If no is given, the video is never rotated, even if the file has
rotation metadata. (The rotation value is added to the rotation metadata, which means the value 0 would
rotate the video according to the rotation metadata.)

When using hardware decoding without copy-back, only 90° steps work, while software decoding and
hardware decoding methods that copy the video back to system memory support all values between 0
and 359.

--video-crop=<[ WxH] ][ +x+y] >, - - vi deo- cr op=<x: y>
Crop the video by starting at the x, y offset for w, h pixels. The crop is applied to the source video
rectangle (before anamorphic stretch) by the VO. A crop rectangle that is not within the video rectangle
will be ignored. This works with hwdec, unlike the equivalent 'lavfi-crop'. When offset is omitted, the
central area will be cropped. Setting the crop to empty one --vi deo-crop=0x0+0+0 overrides
container crop and disables cropping. Setting the crop to - - vi deo- cr op="" disables manual cropping
and restores the container crop if it's specified.

--vi deo- zoonr<val ue>
Adjust the video display scale factor by the given value. The parameter is given log 2. For example,
- -vi deo-zoonr0 is unscaled, - - vi deo- zoon¥1 is twice the size, - - vi deo- zoom=- 2 is one fourth
of the size, and so on.
This option is disabled if - - keepaspect =no is used.

--vi deo- scal e- x=<val ue>, - - vi deo- scal e- y=<val ue>
Multiply the video display size with the given value (default: 1.0). If a non-default value is used, this will
be different from the window size, so video will be either cut off, or black bars are added.
This value is multiplied with the value derived from - - vi deo- zoomand the normal video aspect ratio.
This option is disabled if - - keepaspect =no is used.

--video-align-x=<-1-1>,--video-align-y=<-1-1>



When the video is bigger than the window, these move the displayed rectangle to show different parts of
the video. --vi deo-al i gn-y=-1 would display the top of the video, 0 would display the center
(default), and 1 would display the bottom.

When the video is smaller than the window and - - vi deo-r ecent er is disabled, these move the video
rectangle within the black borders, which are usually added to pad the video to the window if video and
window aspect ratios are different. - - vi deo-al i gn- y=-1 would move the video to the top of the
window (leaving a border only on the bottom), O would center it, and 1 would put the video at the bottom
of the window.

If video and screen aspect match perfectly, these options do nothing.

Unlike --vi deo-pan-x and --video-pan-y, these don't go beyond the video's or window's
boundaries or make the displayed rectangle drift off after zooming.
This option is disabled if - - keepaspect =no is used.

--vi deo-recent er =<yes| no>
Whether to behave as if - - vi deo- al i gn-x and - - vi deo- al i gn-y were 0 when the video becomes
smaller than the window in the respective direction

After zooming in until the video is bigger the window, panning with --video-align-x and/or --video-align-y,
and zooming out until the video is smaller than the window, this is useful to recenter the video in the
window.

Default: no.
--video-margin-ratio-left=<val >, --video-margi n-ratio-right=<val >,
--video-margi n-ratio-top=<val >, --video-nargi n-rati o- bott onr<val >
Set extra video margins on each border (default: 0). Each value is a ratio of the window size, using a

range 0.0-1.0. For example, setting the option - - vi deo- mar gi n-rati o-ri ght =0. 2 at a window size
of 1000 pixels will add a 200 pixels border on the right side of the window.

The video is "boxed" by these margins. The window size is not changed. In particular it does not enlarge
the window, and the margins will cause the video to be downscaled by default. This may or may not
change in the future.

The margins are applied after 90° video rotation, but before any other video transformations.
This option is disabled if - - keepaspect =no is used.
Subtitles still may use the margins, depending on - - sub- use- mar gi ns and similar options.

These options were created for the OSC. Some odd decisions, such as making the margin values a ratio
(instead of pixels), were made for the sake of the OSC. It's possible that these options may be replaced
by ones that are more generally useful. The behavior of these options may change to fit OSC
requirements better, too.

--correct-pts=<yes| no>

--correct - pt s=no switches mpv to a mode where video timing is determined using a fixed framerate
value (either using the - - cont ai ner-f ps-overri de option, or using file information). Sometimes,
files with very broken timestamps can be played somewhat well in this mode. Note that video filters,
subtitle rendering, seeking (including hr-seeks and backstepping), and audio synchronization can be
completely broken in this mode.

--cont ai ner-fps-overri de=<f| oat >
Override video framerate. Useful if the original value is wrong or missing.

Note

Works in - - cor r ect - pt s=no mode only.



--dei nterl ace=<yes| no| aut 0>

Enable or disable deinterlacing (default: no). Interlaced video shows ugly comb-like artifacts, which are
visible on fast movement. Enabling this typically inserts the bwdif video filter in order to deinterlace the
video, or lets the video output apply deinterlacing if supported.

When using aut o, mpv will insert a deinterlacing filter if ffmpeg detects that the video frame is
interlaced. Be aware that there can be false positives in certain cases, such as when files are encoded
as interlaced despite the video not actually being so. This is why aut o is not the default value.

Keep in mind that using this filter will conflict with any manually inserted deinterlacing filters, and that
this will make video look worse if it's not actually interlaced.
--deinterlace-field-parity=<tff]|bff]|auto>

Specify the field parity/order when deinterlacing (default: auto). Each frame of an interlaced video is
divided into two fields, which are then separately transmitted. Top field represents even lines while
bottom field represents odd lines. When deinterlacing the deinterlacer needs to know the correct
temporal order of the fields else the video will appear jittery.

aut o will automatically try to detect the field order of the video, t f f forces top field first while bf f forces
bottom field first.

- -frames=<nunber >
Play/convert only first <nunber > video frames, then quit.

- - franes=0 loads the file, but immediately quits before initializing playback. (Might be useful for scripts
which just want to determine some file properties.)

For audio-only playback, any value greater than O will quit playback immediately after initialization. The
value 0 works as with video.

--vi deo-out put - | evel s=<out put | evel s>

RGB color levels used with YUV to RGB conversion. Normally, output devices such as PC monitors use
full range color levels. However, some TVs and video monitors expect studio RGB levels. Providing full
range output to a device expecting studio level input results in crushed blacks and whites, the reverse in
dim gray blacks and dim whites.

Not all VOs support this option. Some will silently ignore it.
Available color ranges are:

auto: automatic selection (equals to full range) (default)
limited: limited range (16-235 per component), studio levels
full:  full range (0-255 per component), PC levels

Note

It is advisable to use your graphics driver's color range option instead, if available.

- - hwdec- codecs=<codecl, codec?2,...|all>
Allow hardware decoding for a given list of codecs only. The special value al | always allows all codecs.

You can get the list of allowed codecs with npv --vd=hel p. Remove the prefix, e.g. instead of
| avc: h264 use h264.

By default, this is set to h264, vcl, hevc, vp8, vp9, avl, prores, ffvl. Note that the hardware
acceleration special codecs like h264_vdpau are not relevant anymore, and in fact have been removed
from FFmpeg in this form.

This is usually only needed with broken GPUs, where a codec is reported as supported, but decoding
causes more problems than it solves.



Note

On some broken drivers (e.g. NVIDIA on Linux), probing for codecs which the GPU does not
support can unnecessarily slow down video playback initialization. To alleviate this, explicitly
specify a list which only includes the codecs supported on the setup.

Example

mpv - - hwdec=vdpau - - hwdec- codecs=h264, npeg2vi deo
Enable vdpau decoding for h264 and mpeg2 only.

--hwdec- sof t war e- f al | back=<yes| no| N>
Fallback to software decoding if the hardware-accelerated decoder fails (default: 3). If this is a number,
then fallback will be triggered if N frames fail to decode in a row. 1 is equivalent to yes.

Setting this to a higher number might break the playback start fallback: if a fallback happens, parts of the
file will be skipped, approximately by to the number of packets that could not be decoded. Values below
an unspecified count will not have this problem, because mpv retains the packets.

--vd-1lavc-check- hw profil e=<yes| no>
Check hardware decoder profile (default; yes). If no is set, the highest profile of the hardware decoder is
unconditionally selected, and decoding is forced even if the profile of the video is higher than that. The
result is most likely broken decoding, but may also help if the detected or reported profiles are somehow
incorrect.

--vd-lavc-fil mgrai n=<aut o| cpu| gpu>
Enables film grain application on the GPU. If video decoding is done on the CPU, doing film grain
application on the GPU can speed up decoding. This option can also help hardware decoding, as it can
reduce the number of frame copies done.

By default, it's set to aut o, so if the VO supports film grain application, then it will be treated as gpu. If
the VO does not support this, then it will be treated as cpu, regardless of the setting. Currently, only
gpu- next supports film grain application.

--vd- 1l avc-dr=<aut o] yes| no>

Enable direct rendering (default: auto). If this is set to yes, the video will be decoded directly to GPU
video memory (or staging buffers). This can speed up video upload, and may help with large resolutions
or slow hardware. This works only with the following VOs:

e gpu: requires at least OpenGL 4.4 or Vulkan.

e | i bpv: The libmpv render API has optional support.
The aut o option will try to guess whether DR can improve performance on your particular hardware.
Currently this enables it on AMD or NVIDIA if using OpenGL or unconditionally if using Vulkan.
Using video filters of any kind that write to the image data (or output newly allocated frames) will silently
disable the DR code path.
--vd-l avc- bi t exact
Only use bit-exact algorithms in all decoding steps (for codec testing).
--vd-l avc-fast (MPEG-1/2 and H.264 only)

Enable optimizations which do not comply with the format specification and potentially cause problems,
like simpler dequantization, simpler motion compensation, assuming use of the default quantization
matrix, assuming YUV 4:2:0 and skipping a few checks to detect damaged bitstreams.



--vd- | avc- o=<key>=<val ue>[, <key>=<val ue>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all unknown
options through the AVOption system is welcome. A full list of AVOptions can be found in the FFmpeg
manual.

Some options which used to be direct options can be set with this mechanism, like bug, gr ay, i dct , ec,
vi snv, ski p_t op (was st), ski p_bot t om(was sb), debug.

This is a key/value list option. See List Options for details.

Example

--vd- 1 avc- o=debug=pi ct

--vd-1lavc-show al | =<yes| no>
Show even broken/corrupt frames (default: no). If this option is set to no, libavcodec won't output frames
that were either decoded before an initial keyframe was decoded, or frames that are recognized as
corrupted.

--vd- 1l avc- ski pl oopfi |l t er =<ski pval ue> (H.264, HEVC only)

Skips the loop filter (AKA deblocking) during decoding. Since the filtered frame is supposed to be used
as reference for decoding dependent frames, this has a worse effect on quality than not doing
deblocking on e.g. MPEG-2 video. But at least for high bitrate HDTV, this provides a big speedup with
little visible quality loss. Codecs other than H.264 or HEVC may have partial support for this option (often
only al | and none).

<ski pval ue> can be one of the following:

none: Never skip.
default:  Skip useless processing steps (e.g. 0 size packets in AVI).

nonref: Skip frames that are not referenced (i.e. not used for decoding other frames, the
error cannot "build up").

bidir:  Skip B-Frames.
nonkey: Skip all frames except keyframes.
all: ~ Skip all frames.

--vd- | avc- ski pi dct =<ski pval ue> (MPEG-1/2/4 only)
Skips the IDCT step. This degrades quality a lot in almost all cases (see skiploopfilter for available skip
values).

--vd- 1 avc- ski pf rane=<ski pval ue>
Skips decoding of frames completely. Big speedup, but jerky motion and sometimes bad artifacts (see
skiploopfilter for available skip values).

--vd-1lavc-franmedrop=<ski pval ue>
Set framedropping mode used with - - f r amedr op (see skiploopfilter for available skip values).

--vd-1l avc-t hr eads=<N>

Number of threads to use for decoding. Whether threading is actually supported depends on codec
(default: 0). 0 means autodetect number of cores on the machine and use that, up to the maximum of 16.
You can set more than 16 threads manually.

--vd- 1 avc- assune- ol d- x264=<yes| no>
Assume the video was encoded by an old, buggy x264 version (default: no). Normally, this is
autodetected by libavcodec. But if the bitstream contains no x264 version info (or it was somehow
skipped), and the stream was in fact encoded by an old x264 version (build 150 or earlier), and if the

stream uses 4:4:4 chroma, then libavcodec will by default show corrupted video. This option sets the
libavcodec x264_bui | d option to 150, which means that if the stream contains no version info, or was



not encoded by x264 at all, it assumes it was encoded by the old version. Enabling this option is pretty
safe if you want your broken files to work, but in theory this can break on streams not encoded by x264,
or if a stream encoded by a newer x264 version contains no version info.

- -vd- appl y-cr oppi ng
Certain video codecs support cropping, meaning that only a sub-rectangle of the decoded frame is
intended for display. This option controls how cropping is handled by libavcodec. Cropping during
decoding has certain limitations with regards to alignment and hardware decoding. If this option is
enabled, decoder will apply the crop, else VO will handle it. Enabled by default.

- - swapchai n- dept h=<N>
Allow up to N in-flight frames. This essentially controls the frame latency. Increasing the swapchain
depth can improve pipelining and prevent missed vsyncs, but increases visible latency. This option only
mandates an upper limit, the implementation can use a lower latency than requested internally. A setting
of 1 means that the VO will wait for every frame to become visible before starting to render the next
frame. (Default: 3)

Audio

--audi o-pitch-correcti on=<yes| no>
If this is enabled (default), playing with a speed different from normal automatically inserts the
scal et enmpo2 audio filter. You can insert filters besides scal et enpo2 and modify their params using
Conditional auto profiles:

[af _insert]

profile-cond=speed ~= 1

profil e-restore=copy

af - add=scal et enpo2=search-interval =50 # Insert filter and parans here.

Filters set this way replace the scal et enpo2 default, instead of overlapping with it. If there are multiple
audio filters inserted that can do pitch correction, then only the last one in the filter chain is used. For
details on the specifics of each available filter, see the audio filter section.

- - audi o- devi ce=<nane>

Use the given audio device. This consists of the audio output name, e.g. al sa, followed by / , followed
by the audio output specific device name. The default value for this option is aut o, which tries every
audio output in preference order with the default device.

You can list audio devices with - - audi o- devi ce=hel p. This outputs the device name in quotes,
followed by a description. The device name is what you have to pass to the - - audi o- devi ce option.
The list of audio devices can be retrieved by API by using the audi o- devi ce-1i st property.

While the option normally takes one of the strings as indicated by the methods above, you can also force
the device for most AOs by building it manually. For example nane/ f oobar forces the AO nane to use
the device f oobar . However, the - - ao option will strictly force a specific AO. To avoid confusion, don't
use - - ao and - - audi o- devi ce together.

Example for ALSA
MPlayer and mplayer2 required you to replace any ', with ." and any "' with '=" in the ALSA device
name. For example, to use the device named dni x: def aul t, you had to do:
-ao al sa: devi ce=dni x=def aul t
In mpv you could instead use:

- - audi o- devi ce=al sa/ dm x: def aul t



- -audi o- excl usi ve=<yes| no>
Enable exclusive output mode. In this mode, the system is usually locked out, and only mpv will be able
to output audio.

This only works for some audio outputs, such as wasapi , cor eaudi o, pi pewi re and audi ouni t.
Other audio outputs silently ignore this option. They either have no concept of exclusive mode, or the
mpv side of the implementation is missing.

--audi o-fal | back-to-nul | =<yes| no>

If no audio device can be opened, behave as if - - ao=nul | was given. This is useful in combination with
- -audi o- devi ce: instead of causing an error if the selected device does not exist, the client APl user
(or a Lua script) could let playback continue normally, and check the current-ao and
audi o- devi ce-1i st properties to make high-level decisions about how to continue.

--ao=<driver>

Specify the audio output drivers to be used. See AUDIO OUTPUT DRIVERS for details and descriptions
of available drivers.

--af=<filterl[=paraneterl: paraneter2:...],filter2,...>

Specify a list of audio filters to apply to the audio stream. See AUDIO FILTERS for details and
descriptions of the available filters. The option variants - - af - add, - - af - pre, and - - af - cl r exist to
modify a previously specified list, but you should not need these for typical use.

--audi o- spdi f =<codecs>
List of codecs for which compressed audio passthrough should be used. This works for both classic
S/PDIF and HDMIL.

Possible codecs are ac3, dt s, dt s- hd, eac3, t r uehd. Multiple codecs can be specified by separating
them with , . dt s refers to low bitrate DTS core, while dt s- hd refers to DTS MA (receiver and OS
support varies). If both dt s and dt s- hd are specified, it behaves equivalent to specifying dt s- hd only.

In earlier mpv versions you could use - - ad to force the spdif wrapper. This does not work anymore.

Warning

There is not much reason to use this. HDMI supports uncompressed multichannel PCM, and mpv
supports lossless DTS-HD decoding via FFmpeg's new DCA decoder (based on libdcadec).

--ad=<decoder 1, decoder2,...[-]>

Specify a priority list of audio decoders to be used, according to their decoder name. When determining
which decoder to use, the first decoder that matches the audio format is selected. If that is unavailable,
the next decoder is used. Finally, it tries all other decoders that are not explicitly selected or rejected by
the option.

- at the end of the list suppresses fallback on other available decoders not on the - - ad list. This should
not normally be used, because they break normal decoder auto-selection! The - mode is deprecated.

Examples

--ad=np3f | oat

Prefer the FFmpeg np3f | oat decoder over all other MP3 decoders.
--ad=hel p

List all available decoders.



Warning

Enabling compressed audio passthrough (AC3 and DTS via SPDIF/HDMI) with this option is not
possible. Use - - audi o- spdi f instead.

--vol une=<val ue>
Set the startup volume. 0 means silence, 100 means no volume reduction or amplification. Negative
values can be passed for compatibility, but are treated as 0.
Since mpv 0.18.1, this always controls the internal mixer (aka software volume).

- -vol une- nax=<100. 0- 1000. 0>

Set the maximum amplification level in percent (default: 130). A value of 130 will allow you to adjust the
volume up to about double the normal level.

- -vol une- gai n=<db>

Set the volume gain in dB. This is applied on top of other volume and gain settings.
--vol une- gai n- max=<0. 0- 150. 0>, - - vol une- gai n- m n=<- 150. 0- 0. 0>

Set the volume gain range in dB (default: -96 dB min, 12 dB max).
- -repl aygai n=<no| t r ack| al bun

Adjust volume gain according to replaygain values stored in the file metadata. With - - r epl aygai h=no
(the default), perform no adjustment. With --repl aygai n=track, apply track gain. With
- - repl aygai n=al bum apply album gain if present and fall back to track gain otherwise.

--repl aygai n- pr eanp=<db>
Pre-amplification gain in dB to apply to the selected replaygain gain (default: 0).

--repl aygai n-cl i p=<yes| no>
Allow the volume gain to clip (default: no). If this option is not enabled, mpv automatically will prevent
clipping by lowering the gain.

--repl aygai n-f al | back=<db>

Gain in dB to apply if the file has no replay gain tags. This option is always applied if the replaygain logic
is somehow inactive. If this is applied, no other replaygain options are applied.

- -audi o- del ay=<sec>

Audio delay in seconds (positive or negative float value). Positive values delay the audio, and negative
values delay the video.

- - mut e=<yes| no>
Set startup audio mute status (default: no).
See also: - - vol une.

- -audi o- denuxer =<[ +] nane>

Use this audio demuxer type when using - - audi o-fi | e. Use a '+' before the name to force it; this will
skip some checks. Give the demuxer name as printed by - - audi o- dermmuxer =hel p.

--ad-1l avc-ac3drc=<| evel >

Select the Dynamic Range Compression level for AC-3 audio streams. <| evel > is a float value ranging
from O to 1, where 0 means no compression (which is the default) and 1 means full compression (make
loud passages more silent and vice versa). Values up to 6 are also accepted, but are purely
experimental. This option only shows an effect if the AC-3 stream contains the required range
compression information.

The standard mandates that DRC is enabled by default, but mpv (and some other players) ignore this for
the sake of better audio quality.

--ad- 1 avc- downm x=<yes| no>



Whether to request audio channel downmixing from the decoder (default: no). Some decoders, like
AC-3, AAC and DTS, can remix audio on decoding. The requested number of output channels is set with
the - - audi o- channel s option. Useful for playing surround audio on a stereo system.
--ad-1lavc-threads=<0-16>
Number of threads to use for decoding. Whether threading is actually supported depends on codec. As
of this writing, it's supported for some lossless codecs only. 0 means autodetect number of cores on the
machine and use that, up to the maximum of 16 (default: 1).
--ad- | avc- o=<key>=<val ue>[, <key>=<val ue>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all unknown
options through the AVOption system is welcome. A full list of AVOptions can be found in the FFmpeg
manual.

This is a key/value list option. See List Options for detalils.
--ad-spdi f - dt shd=<yes| no>, - - dt shd=<yes| no>
If DTS is passed through, use DTS-HD.

Warning

This and enabling passthrough via --ad are deprecated in favor of using
- -audi o- spdi f =dt s- hd.

- -audi o- channel s=<aut o- saf e| aut o| | ayout s>
Control which audio channels are output (e.g. surround vs. stereo). There are the following possibilities:

e --audi o- channel s=aut o- saf e

Use the system's preferred channel layout. If there is none (such as when accessing a
hardware device instead of the system mixer), force stereo. Some audio outputs might simply
accept any layout and do downmixing on their own.

This is the default.

e --audi o- channel s=aut o

Send the audio device whatever it accepts, preferring the audio's original channel layout. Can
cause issues with HDMI (see the warning below).

e --audi o- channel s=l ayout 1, | ayout 2, . ..
List of , -separated channel layouts which should be allowed. Technically, this only adjusts the

filter chain output to the best matching layout in the list, and passes the result to the audio API.
It's possible that the audio API will select a different channel layout.

Using this mode is recommended for direct hardware output, especially over HDMI (see HDMI
warning below).

e --audi o- channel s=<st er eo| nono>

Force a downmix to stereo or mono. These are special-cases of the previous item. (See
paragraphs below for implications.)

If a list of layouts is given, each item can be either an explicit channel layout name (like 5. 1), or a
channel number. Channel numbers refer to default layouts, e.g. 2 channels refer to stereo, 6 refers to
5.1.

See - - audi o- channel s=hel p output for defined default layouts. This also lists speaker names, which
can be used to express arbitrary channel layouts (e.g. fl -fr-1feis 2.1).

If the list of channel layouts has only 1 item, the decoder is asked to produce according output. This
sometimes triggers decoder-downmix, which might be different from the normal mpv downmix. (Only
some decoders support remixing audio, like AC-3, AAC or DTS. You can use



--ad-1 avc- downm x=no to make the decoder always output its native layout.) One consequence is
that - - audi o- channel s=st er eo triggers decoder downmix, while aut o or aut o- saf e never will,
even if they end up selecting stereo. This happens because the decision whether to use decoder
downmix happens long before the audio device is opened.

If the channel layout of the media file (i.e. the decoder) and the AQ's channel layout don't match, mpv
will attempt to insert a conversion filter. You may need to change the channel layout of the system mixer
to achieve your desired output as mpv does not have control over it. Another work-around for this on
some AOs is to use - - audi 0- excl usi ve=yes to circumvent the system mixer entirely.

Warning

Using aut o can cause issues when using audio over HDMI. The OS will typically report all
channel layouts that _can_ go over HDMI, even if the receiver does not support them. If a
receiver gets an unsupported channel layout, random things can happen, such as dropping the
additional channels, or adding noise.

You are recommended to set an explicit whitelist of the layouts you want. For example, most A/V
receivers connected via HDMI and that can do 7.1 would be served by:
--audi o- channel s=7.1,5. 1, stereo

- -audi o- di spl ay=<no| enbedded-first|external -first>

Determines whether to display cover art when playing audio files and with what priority. It will display the
first image found, and additional images are available as video tracks.

no: Disable display of video entirely when playing audio files.

embedded-first Display embedded images and external cover art, giving priority to embedded
: images (default).

external-first; Display embedded images and external cover art, giving priority to external files.

This option has no influence on files with normal video tracks.
--audio-files=<fil es>

Play audio from an external file while viewing a video.

This is a path list option. See List Options for details.
--audio-file=<file>

CLl/config file only alias for - - audi o-fi | es- append. Each use of this option will add a new audio
track. The details are similar to how - - sub- fi | e works.

- -audi o- f or mat =<f or mat >

Select the sample format used for output from the audio filter layer to the sound card. The values that
<f or mat > can adopt are listed below in the description of the f or nat audio filter.

--audi o- sanpl er at e=<Hz>

Select the output sample rate to be used (of course sound cards have limits on this). If the sample
frequency selected is different from that of the current media, the internal swresample audio filter will be
inserted into the audio filter layer to compensate for the difference.

- -gapl ess-audi o=<no| yes| weak>
Try to play consecutive audio files with no silence or disruption at the point of file change. Default: weak.

no: Disable gapless audio.



Note

yes:

weak:

The audio device is opened using parameters chosen for the first file played and is
then kept open for gapless playback. This means that if the first file for example
has a low sample rate, then the following files may get resampled to the same low
sample rate, resulting in reduced sound quality. If you play files with different
parameters, consider using options such as --audi o-sanpl erate and
- -audi o-f or mat to explicitly select what the shared output format will be.

Normally, the audio device is kept open (using the format it was first initialized
with). If the audio format the decoder output changes, the audio device is closed
and reopened. This means that you will normally get gapless audio with files that
were encoded using the same settings, but might not be gapless in other cases.
The exact conditions under which the audio device is kept open is an
implementation detail, and can change from version to version. Currently, the
device is kept even if the sample format changes, but the sample formats are
convertible. If video is still going on when there is still audio, trying to use gapless
is also explicitly given up.

This feature is implemented in a simple manner and relies on audio output device buffering to
continue playback while moving from one file to another. If playback of the new file starts slowly,
for example because it is played from a remote network location or because you have specified
cache settings that require time for the initial cache fill, then the buffered audio may run out
before playback of the new file can start.

--initial-audi o-sync=<yes| no>
When starting a video file or after events such as seeking, mpv will by default modify the audio stream to
make it start from the same timestamp as video, by either inserting silence at the start or cutting away
the first samples. Disabling this option makes the player behave like older mpv versions did: video and
audio are both started immediately even if their start timestamps differ, and then video timing is gradually
adjusted if necessary to reach correct synchronization later.

--audi o-fil e-aut o=<no| exact | fuzzy|al | >
Load additional audio files matching the video filename. The parameter specifies how external audio files

are matche

d.

no:
exact:
fuzzy:
all:

Don't automatically load external audio files (default).

Load the media filename with audio file extension.

Load all audio files containing the media filename.

Load all audio files in the current and - - audi o- fi | e- pat hs directories.

--audi o-exts=ext1l,ext2,...

Audio file extensions to try to match when using - - audi o-fi | e- aut o, - - aut ocr eat e- pl ayl i st or
--directory-filter-types.

This is a string list option. See List Options for details. Use - - hel p=audi 0- ext s to see default

extensions.

--audi o-fil e-pat hs=<pat hl: path2:...>
Analogous to - - sub- fi | e- pat hs option, but for auto-loaded audio files.

This is a path list option. See List Options for details.

- -audi o-cl i ent - nane=<nane>

The application name the player reports to the audio API. Can be useful if you want to force a different
audio profile (e.g. with PulseAudio), or to set your own application name when using libmpv.

- -audi o- buf f er =<seconds>



Set the audio output minimum buffer. The audio device might actually create a larger buffer if it pleases.
If the device creates a smaller buffer, additional audio is buffered in an additional software buffer.

Making this larger may make soft-volume and other filters react slower, introduce additional issues on
playback speed change, and block the player on audio format changes. A smaller buffer might lead to
audio dropouts.

This option should be used for testing only. If a non-default value helps significantly, the mpv developers
should be contacted.
Default: 0.2 (200 ms).

--audi o- st ream si | ence=<yes| no>

Cash-grab consumer audio hardware (such as A/V receivers) often ignore initial audio sent over HDMI.
This can happen every time audio over HDMI is stopped and resumed. In order to compensate for this,
you can enable this option to not to stop and restart audio on seeks, and fill the gaps with silence.
Likewise, when pausing playback, audio is not stopped, and silence is played while paused. Note that if
no audio track is selected, the audio device will still be closed immediately.

Not all AOs support this.

Warning

This modifies certain subtle player behavior, like A/V-sync and underrun handling. Enabling this
option is strongly discouraged.

--audi o-wai t - open=<secs>

This makes sense for use with - - audi o- st r eam si | ence=yes. If this option is given, the player will
wait for the given amount of seconds after opening the audio device before sending actual audio data to
it. Useful if your expensive hardware discards the first 1 or 2 seconds of audio data sent to it. If
- -audi o-stream si | ence=yes is not set, this option will likely just waste time.

Subtitles

Note

Changing styling and position does not work with all subtitles. Image-based subtitles (DVD,
Bluray/PGS, DVB) cannot changed for fundamental reasons. Subtitles in ASS format are normally not
changed intentionally, but overriding them can be controlled with - - sub- ass- overri de.

- - sub- dermuxer =<[ +] nane>

Force subtitle demuxer type for --sub-file. Give the demuxer name as printed by
- - sub- denuxer =hel p.

--sub- | avc- o=<key>=<val ue>[, <key>=<val ue>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all unknown
options through the AVOption system is welcome. A full list of AVOptions can be found in the FFmpeg
manual.

This is a key/value list option. See List Options for detalils.
- -sub- del ay=<sec>

Delays primary subtitles by <sec> seconds. Can be negative.
--secondary- sub- del ay=<sec>



Delays secondary subtitles by <sec> seconds. Can be negative.
--sub-files=<file-list> --sub-file=<filenane>

Add a subtitle file to the list of external subtitles.

If you use - - sub- fi | e only once, this subtitle file is displayed by default.

If --sub-fil eis used multiple times, the subtitle to use can be switched at runtime by cycling subtitle
tracks. It's possible to show two subtitles at once: use --si d to select the first subtitle index, and
--secondary-si d to select the second index. (The index is printed on the terminal output after the
- - si d=in the list of streams.)

--sub-files is a path list option (see List Options for details), and can take multiple file names
separated by : (Unix) or ; (Windows), while - -sub-fil e takes a single filename, but can be used
multiple times to add multiple files. Technically, --sub-file is a CLl/config file only alias for
--sub-fil es-append.

--secondary- si d=<I D| aut o| no>

Select a secondary subtitle stream. This is similar to - - si d. If a secondary subtitle is selected, it will be
rendered as toptitle (i.e. on the top of the screen) alongside the normal subtitle by default, and provides a
way to render two subtitles at once.

There are some caveats associated with this feature. For example, bitmap subtitles will always be
rendered in their usual position, so selecting a bitmap subtitle as secondary subtitle will result in
overlapping subtitles. Secondary subtitles are never shown on the terminal if video is disabled.

Note

Styling and interpretation of any formatting tags is disabled for the secondary subtitle. Internally,
the same mechanism as - - sub- ass=no is used to strip the styling.

Note

If the main subtitle stream contains formatting tags which display the subtitle at the top of the
screen, it will overlap with the secondary subtitle. To prevent this, you could use - - sub- ass=no
to disable styling in the main subtitle stream.

--sub- scal e=<0- 100>
Factor for the text subtitle font size (default: 1).

Note

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering. Use with care, or
use - - sub-f ont - si ze instead.

--sub-scal e- si gns=<yes| no>
When set to yes, also apply --sub-scal e to typesetting (or "signs"). When this is set to no,
- -sub- scal e is only applied to dialogue. The distinction between dialogue and typesetting is done on a
best effort basis and is not infallible (default: no).

- -sub- scal e- by-wi ndow=<yes| no>



Whether to scale subtitles with the window size (default: yes). If this is disabled while
--sub-scal e-wi t h-wi ndow is set to yes, changing the window size won't change the subtitle font
size.
Affects plain text subtitles only (or ASS if - - sub- ass- overri de is set high enough).

--sub-scal e-wi t h- wi ndow=<yes| no>

Make the subtitle font size relative to the window (default: yes). If this is disabled while
--sub-scal e- by-w ndow is set to yes, the subtitle font size is scaled relative to the video size
instead.

Affects plain text subtitles only (or ASS if - - sub- ass- overri de is set high enough).

Note

By default, the subtitle font size is scaled with the window size. To make the font size constant,
set only - - sub- scal e- by- wi ndow to no. To make the font size scale with video size instead,
setonly - - sub- scal e-w t h-wi ndowto no. It's hot meaningful to set both options to no.

--sub-ass-scal e-wi t h-w ndow=<yes| no>
Like - - sub- scal e-w t h-w ndow, but affects subtitles in ASS format only. Like - - sub- scal e, this
can break ASS subtitles.
Default: no.

- - enbeddedf ont s=<yes| no>

Use fonts embedded in Matroska container files and ASS scripts (default: yes). These fonts can be used
for SSA/ASS subtitle rendering.

- -sub- pos=<0- 150>
Specify the position of subtitles on the screen. The value is the vertical position of the subtitle in % of the

screen height. 100 is the original position, which is often not the absolute bottom of the screen, but with
some margin between the bottom and the subtitle. Values above 100 move the subtitle further down.

Warning

Text subtitles (as opposed to image subtitles) may be cut off if the value of the option is above
100. This is a libass restriction.

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering in addition to the
problem above.

Using - - sub- mar gi n- y can achieve this in a better way.

--secondary- sub- pos=<0- 150>

Specify the position of secondary subtitles on the screen. This is similar to --sub-pos but for
secondary subtitles.

- -sub- speed=<0. 1- 10. 0>

Multiply the subtitle event timestamps with the given value. Can be used to fix the playback speed for
frame-based subtitle formats. Affects text subtitles only.



Example

--sub- speed=25/ 23. 976 plays frame based subtitles which have been loaded assuming a
framerate of 23.976 at 25 FPS.

--sub-ass-styl e-overrides=<[ Styl e.] Param=Val ue[,...]>
Override some style or script info parameters.

This is a string list option. See List Options for details.

Examples

e --sub-ass-styl e-overri des=Font Name=Ari al , Def aul t. Bol d=1

e --sub-ass-styl e-overrides=Pl ayResY=768

Note

Using this option may lead to incorrect subtitle rendering.

--sub- hi nti ng=<none| | i ght| normal | nati ve>
Set font hinting type. <type> can be:
none: no hinting (default)
light: FreeType autohinter, light mode
normal: FreeType autohinter, normal mode
native: font native hinter

Warning

Enabling hinting can lead to mispositioned text (in situations it's supposed to match up video
background), or reduce the smoothness of animations with some badly authored ASS scripts. It
is recommended to not use this option, unless really needed.

--sub-1i ne-spaci ng=<val ue>

Set line spacing value for SSA/ASS renderer.
- - sub- shaper =<si npl e| conpl ex>

Set the text layout engine used by libass.

simple: uses Fribidi only, fast, doesn't render some languages correctly
complex: uses HarfBuzz, slower, wider language support

conpl ex is the default. If libass hasn't been compiled against HarfBuzz, libass silently reverts to
si nmpl e.

--sub-ass-prune-del ay=<-1| seconds>



Set the delay for automatic pruning of events from memory in libass. When enabled, subtitle events are
removed from memory once their end timestamp is older than the specified delay.

-1: disables automatic pruning (default).

seconds: specify how many seconds after an event is no longer displayed should the
pruning occur. 0 prunes events as soon as they're off screen.

Note

This breaks sub-seek and subtitle rendering when changing play-direction from forward to
backward during runtime for events that were already "seen" and need to be rendered again, if

those events got pruned.

--sub-gl yph-1imt=<val ue>
Set the maximum number of cached glyphs in libass cache for the subtitle track. 0 means libass uses its
default value.

Default: 0.

- - sub- bi t map- max- si ze=<val ue>
Set the maximum bitmap cache size in libass cache for the subtitle track. 0 means libass uses its default
value. This accepts values in MB.

Default: 0.
--sub-ass-styl es=<fil enane>

Load all SSA/ASS styles found in the specified file and use them for rendering text subtitles. The syntax
of the file is exactly like the [ V4 Styl es] /[ V4+ Styl es] section of SSA/ASS.

Note

Using this option may lead to incorrect subtitle rendering.

--sub-ass-overri de=<no| yes| scal e| force| stri p>
Control whether user style overrides should be applied. Note that all of these overrides try to be
somewhat smart about figuring out whether or not a subtitle is considered a "sign" and try to be as
non-destructive as possible.
no: Render subtitles as specified by the subtitle scripts, without overrides.
yes: Apply all the - - sub- ass- * style override options. Changing the default for any of
these options can lead to incorrect subtitle rendering.
scale: Like yes,